Linear And Generalized Linear Mixed Models And Their Applications Linear Mixed Models Part Ii

DOWNLOAD
Download Linear And Generalized Linear Mixed Models And Their Applications Linear Mixed Models Part Ii PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Linear And Generalized Linear Mixed Models And Their Applications Linear Mixed Models Part Ii book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Linear And Generalized Linear Mixed Models And Their Applications
DOWNLOAD
Author : Jiming Jiang
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-05-30
Linear And Generalized Linear Mixed Models And Their Applications written by Jiming Jiang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-30 with Mathematics categories.
Over the past decade there has been an explosion of developments in mixed e?ects models and their applications. This book concentrates on two major classes of mixed e?ects models, linear mixed models and generalized linear mixed models, with the intention of o?ering an up-to-date account of theory and methods in the analysis of these models as well as their applications in various ?elds. The ?rst two chapters are devoted to linear mixed models. We classify l- ear mixed models as Gaussian (linear) mixed models and non-Gaussian linear mixed models. There have been extensive studies in estimation in Gaussian mixed models as well as tests and con?dence intervals. On the other hand, the literature on non-Gaussian linear mixed models is much less extensive, partially because of the di?culties in inference about these models. However, non-Gaussian linear mixed models are important because, in practice, one is never certain that normality holds. This book o?ers a systematic approach to inference about non-Gaussian linear mixed models. In particular, it has included recently developed methods, such as partially observed information, iterative weighted least squares, and jackknife in the context of mixed models. Other new methods introduced in this book include goodness-of-?t tests, p- diction intervals, and mixed model selection. These are, of course, in addition to traditional topics such as maximum likelihood and restricted maximum likelihood in Gaussian mixed models.
Linear And Generalized Linear Mixed Models And Their Applications Linear Mixed Models Part Ii
DOWNLOAD
Author : Jiming Jiang
language : en
Publisher:
Release Date : 2021
Linear And Generalized Linear Mixed Models And Their Applications Linear Mixed Models Part Ii written by Jiming Jiang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.
Now in its second edition, this book covers two major classes of mixed effects models-linear mixed models and generalized linear mixed models-and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. It offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it discusses the latest developments and methods in the field, incorporating relevant updates since publication of the first edition. These include advances in high-dimensional linear mixed models in genome-wide association studies (GWAS), advances in inference about generalized linear mixed models with crossed random effects, new methods in mixed model prediction, mixed model selection, and mixed model diagnostics. This book is suitable for students, researchers, and practitioners who are interested in using mixed models for statistical data analysis with public health applications. It is best for graduate courses in statistics, or for those who have taken a first course in mathematical statistics, are familiar with using computers for data analysis, and have a foundational background in calculus and linear algebra.
Generalized Linear Mixed Models
DOWNLOAD
Author : Walter W. Stroup
language : en
Publisher: CRC Press
Release Date : 2024-05-21
Generalized Linear Mixed Models written by Walter W. Stroup and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-21 with Mathematics categories.
Generalized Linear Mixed Models: Modern Concepts, Methods, and Applications (2nd edition) presents an updated introduction to linear modeling using the generalized linear mixed model (GLMM) as the overarching conceptual framework. For students new to statistical modeling, this book helps them see the big picture – linear modeling as broadly understood and its intimate connection with statistical design and mathematical statistics. For readers experienced in statistical practice, but new to GLMMs, the book provides a comprehensive introduction to GLMM methodology and its underlying theory. Unlike textbooks that focus on classical linear models or generalized linear models or mixed models, this book covers all of the above as members of a unified GLMM family of linear models. In addition to essential theory and methodology, this book features a rich collection of examples using SAS® software to illustrate GLMM practice. This second edition is updated to reflect lessons learned and experience gained regarding best practices and modeling choices faced by GLMM practitioners. New to this edition are two chapters focusing on Bayesian methods for GLMMs. Key Features: • Most statistical modeling books cover classical linear models or advanced generalized and mixed models; this book covers all members of the GLMM family – classical and advanced models. • Incorporates lessons learned from experience and on-going research to provide up-to-date examples of best practices. • Illustrates connections between statistical design and modeling: guidelines for translating study design into appropriate model and in-depth illustrations of how to implement these guidelines; use of GLMM methods to improve planning and design. • Discusses the difference between marginal and conditional models, differences in the inference space they are intended to address and when each type of model is appropriate. • In addition to likelihood-based frequentist estimation and inference, provides a brief introduction to Bayesian methods for GLMMs. Walt Stroup is an Emeritus Professor of Statistics. He served on the University of Nebraska statistics faculty for over 40 years, specializing in statistical modeling and statistical design. He is a Fellow of the American Statistical Association, winner of the University of Nebraska Outstanding Teaching and Innovative Curriculum Award and author or co-author of three books on mixed models and their extensions. Marina Ptukhina (Pa-too-he-nuh), PhD, is an Associate Professor of Statistics at Whitman College. She is interested in statistical modeling, design and analysis of research studies and their applications. Her research includes applications of statistics to economics, biostatistics and statistical education. Ptukhina earned a PhD in Statistics from the University of Nebraska-Lincoln, a Master of Science degree in Mathematics from Texas Tech University and a Specialist degree in Management from The National Technical University "Kharkiv Polytechnic Institute." Julie Garai, PhD, is a Data Scientist at Loop. She earned her PhD in Statistics from the University of Nebraska-Lincoln and a bachelor’s degree in Mathematics and Spanish from Doane College. Dr Garai actively collaborates with statisticians, psychologists, ecologists, forest scientists, software engineers, and business leaders in academia and industry. In her spare time, she enjoys leisurely walks with her dogs, dance parties with her children, and playing the trombone.
Generalized Linear And Nonlinear Models For Correlated Data
DOWNLOAD
Author : Edward F. Vonesh
language : en
Publisher: SAS Institute
Release Date : 2014-07-07
Generalized Linear And Nonlinear Models For Correlated Data written by Edward F. Vonesh and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-07 with Mathematics categories.
Edward Vonesh's Generalized Linear and Nonlinear Models for Correlated Data: Theory and Applications Using SAS is devoted to the analysis of correlated response data using SAS, with special emphasis on applications that require the use of generalized linear models or generalized nonlinear models. Written in a clear, easy-to-understand manner, it provides applied statisticians with the necessary theory, tools, and understanding to conduct complex analyses of continuous and/or discrete correlated data in a longitudinal or clustered data setting. Using numerous and complex examples, the book emphasizes real-world applications where the underlying model requires a nonlinear rather than linear formulation and compares and contrasts the various estimation techniques for both marginal and mixed-effects models. The SAS procedures MIXED, GENMOD, GLIMMIX, and NLMIXED as well as user-specified macros will be used extensively in these applications. In addition, the book provides detailed software code with most examples so that readers can begin applying the various techniques immediately. This book is part of the SAS Press program.
Asymptotic Analysis Of Mixed Effects Models
DOWNLOAD
Author : Jiming Jiang
language : en
Publisher: CRC Press
Release Date : 2017-09-19
Asymptotic Analysis Of Mixed Effects Models written by Jiming Jiang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-19 with Mathematics categories.
Large sample techniques are fundamental to all fields of statistics. Mixed effects models, including linear mixed models, generalized linear mixed models, non-linear mixed effects models, and non-parametric mixed effects models are complex models, yet, these models are extensively used in practice. This monograph provides a comprehensive account of asymptotic analysis of mixed effects models. The monograph is suitable for researchers and graduate students who wish to learn about asymptotic tools and research problems in mixed effects models. It may also be used as a reference book for a graduate-level course on mixed effects models, or asymptotic analysis.
Correlated Data Analysis Modeling Analytics And Applications
DOWNLOAD
Author : Peter X. -K. Song
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-06-30
Correlated Data Analysis Modeling Analytics And Applications written by Peter X. -K. Song and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-30 with Mathematics categories.
This book covers recent developments in correlated data analysis. It utilizes the class of dispersion models as marginal components in the formulation of joint models for correlated data. This enables the book to cover a broader range of data types than the traditional generalized linear models. The reader is provided with a systematic treatment for the topic of estimating functions, and both generalized estimating equations (GEE) and quadratic inference functions (QIF) are studied as special cases. In addition to the discussions on marginal models and mixed-effects models, this book covers new topics on joint regression analysis based on Gaussian copulas.
Mixed Models
DOWNLOAD
Author : Eugene Demidenko
language : en
Publisher: John Wiley & Sons
Release Date : 2005-01-28
Mixed Models written by Eugene Demidenko and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-01-28 with Mathematics categories.
A rigorous, self-contained examination of mixed model theory and application Mixed modeling is one of the most promising and exciting areas of statistical analysis, enabling the analysis of nontraditional, clustered data that may come in the form of shapes or images. This book provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as applications such as the analysis of tumor regrowth, shape, and image. Paying special attention to algorithms and their implementations, the book discusses: Modeling of complex clustered or longitudinal data Modeling data with multiple sources of variation Modeling biological variety and heterogeneity Mixed model as a compromise between the frequentist and Bayesian approaches Mixed model for the penalized log-likelihood Healthy Akaike Information Criterion (HAIC) How to cope with parameter multidimensionality How to solve ill-posed problems including image reconstruction problems Modeling of ensemble shapes and images Statistics of image processing Major results and points of discussion at the end of each chapter along with "Summary Points" sections make this reference not only comprehensive but also highly accessible for professionals and students alike in a broad range of fields such as cancer research, computer science, engineering, and industry.
Age Period Cohort Analysis
DOWNLOAD
Author : Yang Yang
language : en
Publisher: CRC Press
Release Date : 2016-04-19
Age Period Cohort Analysis written by Yang Yang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Mathematics categories.
This book explores the ways in which statistical models, methods, and research designs can be used to open new possibilities for APC analysis. Within a single, consistent HAPC-GLMM statistical modeling framework, the authors synthesize APC models and methods for three research designs: age-by-time period tables of population rates or proportions, repeated cross-section sample surveys, and accelerated longitudinal panel studies. They show how the empirical application of the models to various problems leads to many fascinating findings on how outcome variables develop along the age, period, and cohort dimensions.
Modern Phylogenetic Comparative Methods And Their Application In Evolutionary Biology
DOWNLOAD
Author : László Zsolt Garamszegi
language : en
Publisher: Springer
Release Date : 2014-07-29
Modern Phylogenetic Comparative Methods And Their Application In Evolutionary Biology written by László Zsolt Garamszegi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-29 with Science categories.
Phylogenetic comparative approaches are powerful analytical tools for making evolutionary inferences from interspecific data and phylogenies. The phylogenetic toolkit available to evolutionary biologists is currently growing at an incredible speed, but most methodological papers are published in the specialized statistical literature and many are incomprehensible for the user community. This textbook provides an overview of several newly developed phylogenetic comparative methods that allow to investigate a broad array of questions on how phenotypic characters evolve along the branches of phylogeny and how such mechanisms shape complex animal communities and interspecific interactions. The individual chapters were written by the leading experts in the field and using a language that is accessible for practicing evolutionary biologists. The authors carefully explain the philosophy behind different methodologies and provide pointers – mostly using a dynamically developing online interface – on how these methods can be implemented in practice. These “conceptual” and “practical” materials are essential for expanding the qualification of both students and scientists, but also offer a valuable resource for educators. Another value of the book are the accompanying online resources (available at: http://www.mpcm-evolution.com), where the authors post and permanently update practical materials to help embed methods into practice.
Bayesian And Frequentist Regression Methods
DOWNLOAD
Author : Jon Wakefield
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-01-04
Bayesian And Frequentist Regression Methods written by Jon Wakefield and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-04 with Mathematics categories.
Bayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis. Many texts cover one or the other of the approaches, but this is the most comprehensive combination of Bayesian and frequentist methods that exists in one place. The two philosophical approaches to regression methodology are featured here as complementary techniques, with theory and data analysis providing supplementary components of the discussion. In particular, methods are illustrated using a variety of data sets. The majority of the data sets are drawn from biostatistics but the techniques are generalizable to a wide range of other disciplines.