Logarithmic Similarity Measure Between Interval Valued Fuzzy Sets And Its Fault Diagnosis Method

DOWNLOAD
Download Logarithmic Similarity Measure Between Interval Valued Fuzzy Sets And Its Fault Diagnosis Method PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Logarithmic Similarity Measure Between Interval Valued Fuzzy Sets And Its Fault Diagnosis Method book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Logarithmic Similarity Measure Between Interval Valued Fuzzy Sets And Its Fault Diagnosis Method
DOWNLOAD
Author : Zhikang Lu
language : en
Publisher: Infinite Study
Release Date :
Logarithmic Similarity Measure Between Interval Valued Fuzzy Sets And Its Fault Diagnosis Method written by Zhikang Lu and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.
Fault diagnosis is an important task for the normal operation and maintenance of equipment. In many real situations, the diagnosis data cannot provide deterministic values and are usually imprecise or uncertain. Thus, interval-valued fuzzy sets (IVFSs) are very suitable for expressing imprecise or uncertain fault information in real problems.
Hybrid Binary Logarithm Similarity Measure For Magdm Problems Under Svns Assessments
DOWNLOAD
Author : Kalyan Mondal
language : en
Publisher: Infinite Study
Release Date :
Hybrid Binary Logarithm Similarity Measure For Magdm Problems Under Svns Assessments written by Kalyan Mondal and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.
Single valued neutrosophic set is an important mathematical tool for tackling uncertainty in scientific and engineering problems because it can handle situation involving indeterminacy. In this research, we introduce new similarity measures for single valued neutrosophic sets based on binary logarithm function.
Entropy And Similarity Measure For T2svnss And Its Application
DOWNLOAD
Author : Geng Juan-Juan
language : en
Publisher: Infinite Study
Release Date :
Entropy And Similarity Measure For T2svnss And Its Application written by Geng Juan-Juan and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.
The objective of this paper is to present a new approach for solving the multi-criteria group decision-making (MCGDM) problems in type-2 single valued neutrosophic set (T2SVNS) environment. Firstly, we give the concepts SVNS, T2SVNS and tangent similarity measure with T2SVN information. Secondly, we define a new entropy function for determining unknown attribute weights.
Neutrosophic Sets And Systems Vol 20 2018
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date :
Neutrosophic Sets And Systems Vol 20 2018 written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Neutrosophic Sets And Systems An International Book Series In Information Science And Engineering Vol 20 2018
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date : 2018
Neutrosophic Sets And Systems An International Book Series In Information Science And Engineering Vol 20 2018 written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Mathematics categories.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
New Trends In Aggregation Theory
DOWNLOAD
Author : Radomír Halaš
language : en
Publisher: Springer
Release Date : 2019-05-16
New Trends In Aggregation Theory written by Radomír Halaš and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-16 with Technology & Engineering categories.
This book collects the contributions presented at AGOP 2019, the 10th International Summer School on Aggregation Operators, which took place in Olomouc (Czech Republic) in July 2019. It includes contributions on topics ranging from the theory and foundations of aggregation functions to their various applications. Aggregation functions have numerous applications, including, but not limited to, data fusion, statistics, image processing, and decision-making. They are usually defined as those functions that are monotone with respect to each input and that satisfy various natural boundary conditions. In particular settings, these conditions might be relaxed or otherwise customized according to the user’s needs. Noteworthy classes of aggregation functions include means, t-norms and t-conorms, uninorms and nullnorms, copulas and fuzzy integrals (e.g., the Choquet and Sugeno integrals). This book provides a valuable overview of recent research trends in this area.
A Novel Divergence Measure And Its Based Topsis Method For Multi Criteria Decision Making Under Single Valued Neutrosophic Environment
DOWNLOAD
Author : Nancy
language : en
Publisher: Infinite Study
Release Date :
A Novel Divergence Measure And Its Based Topsis Method For Multi Criteria Decision Making Under Single Valued Neutrosophic Environment written by Nancy and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.
The theme of this work is to present an axiomatic definition of divergence measure for single-valued neutrosophic sets (SVNSs). The properties of the proposed divergence measure have been studied. Further, we develop a novel technique for order preference by similarity to ideal solution (TOPSIS) method for solving single-valued neutrosophic multi-criteria decision-making with incomplete weight information. Finally, a numerical example is presented to verify the proposed approach and to present its effectiveness and practicality.
Neutrosophic Sets And Systems Vol 51 2022
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date : 2022-09-01
Neutrosophic Sets And Systems Vol 51 2022 written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-01 with Mathematics categories.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation
Bipolar Neutrosophic Distance Measure In Multi Attribute Decision Making
DOWNLOAD
Author : Chunfang Liu
language : en
Publisher: Infinite Study
Release Date :
Bipolar Neutrosophic Distance Measure In Multi Attribute Decision Making written by Chunfang Liu and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.
Bipolar neutrosophic set(BNS) is a generalization of bipolar fuzzy set and neutrosophic set that can describe the uncertain information from both positive and negative perspectives. In this contribution, we study the multi-attribute decision making methods based on the distance measure under the uncertain information which the attribute weights are incompletely known or completely unknown.
Advancing Uncertain Combinatorics Through Graphization Hyperization And Uncertainization Fuzzy Neutrosophic Soft Rough And Beyond
DOWNLOAD
Author : Takaaki Fujita
language : en
Publisher: Infinite Study
Release Date : 2025-01-15
Advancing Uncertain Combinatorics Through Graphization Hyperization And Uncertainization Fuzzy Neutrosophic Soft Rough And Beyond written by Takaaki Fujita and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-15 with Mathematics categories.
This book represents the fourth volume in the series Collected Papers on Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond. This volume specifically delves into the concept of the HyperUncertain Set, building on the foundational advancements introduced in previous volumes. The series aims to explore the ongoing evolution of uncertain combinatorics through innovative methodologies such as graphization, hyperization, and uncertainization. These approaches integrate and extend core concepts from fuzzy, neutrosophic, soft, and rough set theories, providing robust frameworks to model and analyze the inherent complexity of real-world uncertainties. At the heart of this series lies combinatorics and set theory—cornerstones of mathematics that address the study of counting, arrangements, and the relationships between collections under defined rules. Traditionally, combinatorics has excelled in solving problems involving uncertainty, while advancements in set theory have expanded its scope to include powerful constructs like fuzzy and neutrosophic sets. These advanced sets bring new dimensions to uncertainty modeling by capturing not just binary truth but also indeterminacy and falsity. In this fourth volume, the integration of set theory with graph theory takes center stage, culminating in "graphized" structures such as hypergraphs and superhypergraphs. These structures, paired with innovations like Neutrosophic Oversets, Undersets, Offsets, and the Nonstandard Real Set, extend the boundaries of mathematical abstraction. This fusion of combinatorics, graph theory, and uncertain set theory creates a rich foundation for addressing the multidimensional and hierarchical uncertainties prevalent in both theoretical and applied domains. The book is structured into thirteen chapters, each contributing unique perspectives and advancements in the realm of HyperUncertain Sets and their related frameworks. The first chapter (Advancing Traditional Set Theory with Hyperfuzzy, Hyperneutrosophic, and Hyperplithogenic Sets) explores the evolution of classical set theory to better address the complexity and ambiguity of real-world phenomena. By introducing hierarchical structures like hyperstructures and superhyperstructures—created through iterative applications of power sets—it lays the groundwork for more abstract and adaptable mathematical tools. The focus is on extending three foundational frameworks: Fuzzy Sets, Neutrosophic Sets, and Plithogenic Sets into their hyperforms: Hyperfuzzy Sets, Hyperneutrosophic Sets, and Hyperplithogenic Sets. These advanced concepts are applied across diverse fields such as statistics, clustering, evolutionary theory, topology, decision-making, probability, and language theory. The goal is to provide a robust platform for future research in this expanding area of study. The second chapter (Applications and Mathematical Properties of Hyperneutrosophic and SuperHyperneutrosophic Sets) extends the work on Hyperfuzzy, Hyperneutrosophic, and Hyperplithogenic Sets by delving into their advanced applications and mathematical foundations. Building on prior research, it specifically examines Hyperneutrosophic and SuperHyperneutrosophic Sets, exploring their integration into: Neutrosophic Logic, Cognitive Maps,Graph Neural Networks, Classifiers, and Triplet Groups. The chapter also investigates their mathematical properties and applicability in addressing uncertainties and complexities inherent in various domains. These insights aim to inspire innovative uses of hypergeneralized sets in modern theoretical and applied research. The third chapter (New Extensions of Hyperneutrosophic Sets – Bipolar, Pythagorean, Double-Valued, and Interval-Valued Sets) studies advanced variations of Neutrosophic Sets, a mathematical framework defined by three membership functions: truth (T), indeterminacy (I), and falsity (F). By leveraging the concepts of Hyperneutrosophic and SuperHyperneutrosophic Sets, the study extends: Bipolar Neutrosophic Sets, Interval-Valued Neutrosophic Sets, Pythagorean Neutrosophic Sets, and Double-Valued Neutrosophic Sets. These extensions address increasingly complex scenarios, and a brief analysis is provided to explore their potential applications and mathematical underpinnings. Building on prior research, the fourth chapter (Hyperneutrosophic Extensions of Complex, Single-Valued Triangular, Fermatean, and Linguistic Sets) expands on Neutrosophic Set theory by incorporating recent advancements in Hyperneutrosophic and SuperHyperneutrosophic Sets. The study focuses on extending: Complex Neutrosophic Sets, Single-Valued Triangular Neutrosophic Sets, Fermatean Neutrosophic Sets, and Linguistic Neutrosophic Sets. The analysis highlights the mathematical structures of these hyperextensions and explores their connections with existing set-theoretic concepts, offering new insights into managing uncertainty in multidimensional challenges. The fifth chapter (Advanced Extensions of Hyperneutrosophic Sets – Dynamic, Quadripartitioned, Pentapartitioned, Heptapartitioned, and m-Polar) delves deeper into the evolution of Neutrosophic Sets by exploring advanced frameworks designed for even more intricate applications. New extensions include: Dynamic Neutrosophic Sets, Quadripartitioned Neutrosophic Sets, Pentapartitioned Neutrosophic Sets, Heptapartitioned Neutrosophic Sets, and m-Polar Neutrosophic Sets. These developments build upon foundational research and aim to provide robust tools for addressing multidimensional and highly nuanced problems. The sixth chapter (Advanced Extensions of Hyperneutrosophic Sets – Cubic, Trapezoidal, q-Rung Orthopair, Overset, Underset, and Offset) builds upon the Neutrosophic framework, which employs truth (T), indeterminacy (I), and falsity (F) to address uncertainty. Leveraging advancements in Hyperneutrosophic and SuperHyperneutrosophic Sets, the study extends: Cubic Neutrosophic Sets, Trapezoidal Neutrosophic Sets, q-Rung Orthopair Neutrosophic Sets, Neutrosophic Oversets, Neutrosophic Undersets, and Neutrosophic Offsets. The chapter provides a brief analysis of these new set types, exploring their properties and potential applications in solving multidimensional problems. The seventh chapter (Specialized Classes of Hyperneutrosophic Sets – Support, Paraconsistent, and Faillibilist Sets) delves into unique classes of Neutrosophic Sets extended through Hyperneutrosophic and SuperHyperneutrosophic frameworks to tackle advanced theoretical challenges. The study introduces and extends: Support Neutrosophic Sets, Neutrosophic Intuitionistic Sets, Neutrosophic Paraconsistent Sets, Neutrosophic Faillibilist Sets, Neutrosophic Paradoxist and Pseudo-Paradoxist Sets, Neutrosophic Tautological and Nihilist Sets, Neutrosophic Dialetheist Sets, and Neutrosophic Trivialist Sets. These extensions address highly nuanced aspects of uncertainty, further advancing the theoretical foundation of Neutrosophic mathematics. The eight chapter (MultiNeutrosophic Sets and Refined Neutrosophic Sets) focuses on two advanced Neutrosophic frameworks: MultiNeutrosophic Sets, and Refined Neutrosophic Sets. Using Hyperneutrosophic and nn-SuperHyperneutrosophic Sets, these extensions are analyzed in detail, highlighting their adaptability to multidimensional and complex scenarios. Examples and mathematical properties are provided to showcase their practical relevance and theoretical depth. The ninth chapter (Advanced Hyperneutrosophic Set Types – Type-m, Nonstationary, Subset-Valued, and Complex Refined) explores extensions of the Neutrosophic framework, focusing on: Type-m Neutrosophic Sets, Nonstationary Neutrosophic Sets, Subset-Valued Neutrosophic Sets, and Complex Refined Neutrosophic Sets. These extensions utilize the Hyperneutrosophic and SuperHyperneutrosophic frameworks to address advanced challenges in uncertainty management, expanding their mathematical scope and practical applications. The tenth chapter (Hyperfuzzy Hypersoft Sets and Hyperneutrosophic Hypersoft Sets) integrates the principles of Fuzzy, Neutrosophic, and Soft Sets with hyperstructures to introduce: Hyperfuzzy Hypersoft Sets, and Hyperneutrosophic Hypersoft Sets. These frameworks are designed to manage complex uncertainty through hierarchical structures based on power sets, with detailed analysis of their properties and theoretical potential. The eleventh chapter (A Review of SuperFuzzy, SuperNeutrosophic, and SuperPlithogenic Sets) revisits and extends the study of advanced set concepts such as: SuperFuzzy Sets, Super-Intuitionistic Fuzzy Sets,Super-Neutrosophic Sets, and SuperPlithogenic Sets, including their specialized variants like quadripartitioned, pentapartitioned, and heptapartitioned forms. The work serves as a consolidation of existing studies while highlighting potential directions for future research in hierarchical uncertainty modeling. Focusing on decision-making under uncertainty, the tweve chapter (Advanced SuperHypersoft and TreeSoft Sets) introduces six novel concepts: SuperHypersoft Rough Sets,SuperHypersoft Expert Sets, Bipolar SuperHypersoft Sets, TreeSoft Rough Sets, TreeSoft Expert Sets, and Bipolar TreeSoft Sets. Definitions, properties, and potential applications of these frameworks are explored to enhance the flexibility of soft set-based models. The final chapter (Hierarchical Uncertainty in Fuzzy, Neutrosophic, and Plithogenic Sets) provides a comprehensive survey of hierarchical uncertainty frameworks, with a focus on Plithogenic Sets and their advanced extensions: Hyperplithogenic Sets, SuperHyperplithogenic Sets. It examines relationships with other major concepts such as Intuitionistic Fuzzy Sets, Vague Sets, Picture Fuzzy Sets, Hesitant Fuzzy Sets, and multi-partitioned Neutrosophic Sets, consolidating their theoretical interconnections for modeling complex systems. This volume not only reflects the dynamic interplay between theoretical rigor and practical application but also serves as a beacon for future research in uncertainty modeling, offering advanced tools to tackle the intricacies of modern challenges.