[PDF] Low Power High Performance Sar Adc Design With Digital Calibration Techniques - eBooks Review

Low Power High Performance Sar Adc Design With Digital Calibration Techniques


Low Power High Performance Sar Adc Design With Digital Calibration Techniques
DOWNLOAD

Download Low Power High Performance Sar Adc Design With Digital Calibration Techniques PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Low Power High Performance Sar Adc Design With Digital Calibration Techniques book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Low Power High Performance Sar Adc Design With Digital Calibration Techniques


Low Power High Performance Sar Adc Design With Digital Calibration Techniques
DOWNLOAD
Author : Wenbo Liu
language : en
Publisher:
Release Date : 2011

Low Power High Performance Sar Adc Design With Digital Calibration Techniques written by Wenbo Liu and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with categories.




High Resolution And High Speed Integrated Cmos Ad Converters For Low Power Applications


High Resolution And High Speed Integrated Cmos Ad Converters For Low Power Applications
DOWNLOAD
Author : Weitao Li
language : en
Publisher: Springer
Release Date : 2017-08-01

High Resolution And High Speed Integrated Cmos Ad Converters For Low Power Applications written by Weitao Li and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-01 with Technology & Engineering categories.


This book is a step-by-step tutorial on how to design a low-power, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) integrated CMOS analog-to-digital (AD) converter, to respond to the challenge from the rapid growth of IoT. The discussion includes design techniques on both the system level and the circuit block level. In the architecture level, the power-efficient pipelined AD converter, the hybrid AD converter and the time-interleaved AD converter are described. In the circuit block level, the reference voltage buffer, the opamp, the comparator, and the calibration are presented. Readers designing low-power and high-performance AD converters won’t want to miss this invaluable reference. Provides an in-depth introduction to the newest design techniques for the power-efficient, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) AD converter; Presents three types of power-efficient architectures of the high-resolution and high-speed AD converter; Discusses the relevant circuit blocks (i.e., the reference voltage buffer, the opamp, and the comparator) in two aspects, relaxing the requirements and improving the performance.



Low Power High Performance Sar Adc With Redundancy And Digital Background Calibration


Low Power High Performance Sar Adc With Redundancy And Digital Background Calibration
DOWNLOAD
Author : Albert Hsu Ting Chang
language : en
Publisher:
Release Date : 2013

Low Power High Performance Sar Adc With Redundancy And Digital Background Calibration written by Albert Hsu Ting Chang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with categories.


As technology scales, the improved speed and energy eciency make the successive- approximation-register (SAR) architecture an attractive alternative for applications that require high-speed and high-accuracy analog-to-digital converters (ADCs). In SAR ADCs, the key linearity and speed limiting factors are capacitor mismatch and incomplete digital-to-analog converter (DAC)/reference voltage settling. In this the- sis, a sub-radix-2 SAR ADC is presented with several new contributions. The main contributions include investigation of using digital error correction (redundancy) in SAR ADCs for dynamic error correction and speed improvement, development of two new calibration algorithms to digitally correct for manufacturing mismatches, design of new architecture to incorporate redundancy within the architecture itself while achieving 94% better energy eciency compared to conventional switching algorithm, development of a new capacitor DAC structure to improve the SNR by four times with improved matching, joint design of the analog and digital circuits to create an asynchronous platform in order to reach the targeted performance, and analysis of key circuit blocks to enable the design to meet noise, power and timing requirements. The design is fabricated in standard 1P9M 65nm CMOS technology with 1.2V supply. The active die area is 0.083mm2 with full rail-to-rail input swing of 2.4V p-p . A 67.4dB SNDR, 78.1dB SFDR, +1.0/-0.9 LSB12 INL and +0.5/-0.7 LSB12 DNL are achieved at 50MS/s at Nyquist rate. The total power consumption, including the estimated calibration and reference power, is 2.1mW, corresponding to 21.9fJ/conv.- step FoM. This ADC achieves the best FoM of any ADCs with greater than 10b ENOB and 10MS/s sampling rate.



Design And Implementation Of Radix 3 Radix 2 Based Novel Hybrid Sar Adc In Scaled Cmos Technologies


Design And Implementation Of Radix 3 Radix 2 Based Novel Hybrid Sar Adc In Scaled Cmos Technologies
DOWNLOAD
Author : Md. Manzur Rahman
language : en
Publisher:
Release Date : 2017

Design And Implementation Of Radix 3 Radix 2 Based Novel Hybrid Sar Adc In Scaled Cmos Technologies written by Md. Manzur Rahman and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.


This thesis focuses on low power and high speed design techniques for successive approximation register (SAR) analog-to-digital converters (ADCs) in nanoscale CMOS technologies. SAR ADCs’ speed is limited by the number of bits of resolution. An N-bit conventional SAR ADC takes N conversion cycles. To speed up the conversion process, we introduce a radix-3 SAR ADC which can compute 1:6 bits per cycle. To our knowledge, it is the first fully programmable and efficiently hardware controlled radix-3 SAR ADC. We had to use two comparators per cycle due to ADC architecture and we proposed a simple calibration scheme for the comparators. Also, as the architecture of the DAC array is completely different from the architecture of conventional radix-2 SAR ADC’s DAC arrays, we came up with an algorithm for calibration of capacitors of the DAC. Low power SAR ADCs face two major challenges especially at high resolutions: (1) increased comparator power to suppress the noise, and (2) increased DAC switching energy due to the large DAC size. Due to our proposed architecture,the radix-3 SAR ADC uses two comparators per cycle and two differential DACs. To improve the comparator’s power efficiency, an efficient and low cost calibration technique has been introduced. It allows a low power and noisy comparator to achieve high signal-to-noise ratio (SNR). To improve the DAC switching energy, we introduced a radix-3/radix-2 based novel hybrid SAR ADC. We use two single ended DACs for radix-3 SAR ADC and these two single ended DACs can be used as one differential DAC for radix-2 SAR ADC. So, overall, we only have a single DAC as conventional radix- 2 SAR ADC. In addition, a monotonic switching technique is adopted for radix-2 search to reduce the DAC capacitor size and hence, to reduce switching power. It can reduce the total number of unit capacitors by four times. Our proposed hybrid SAR ADC can achieve less DAC energy compared to radix-3 and radix-2 SAR ADCs. Also, to utilize technology scaling, we used the minimum capacitor size allowed by thermal noise limitations. To achieve high resolution, we introduced calibration algorithm for the DAC array. As mentioned earlier, the radix-3 SAR ADC offers higher power than conventional radix-2 SAR ADC because of simultaneous use of two comparators. In the proposed hybrid SAR ADC, we will be using radix-3 search for first few MSB bits. So, the resolution required for radix-3 comparators are much larger than the LSB value of 10-bit ADC. By implementing calibration of comparators, we can use low power, high input referred offset and high speed comparators for radix-3 search. Radix-2 search will be used for rest of the bits and the resolution of the radix-2 comparator has to be less than the required LSB value. So, a high power, low input referred offset and high speed comparator is used for radix-2 search. Also, we introduced clock gating for comparators. So, radix-3 comparators will not toggle during radix-2 search and the radix-2 comparators will be inactive during radix-3 search. By using the aforementioned techniques, the overall comparator power is definitely less than a radix-3 SAR ADC and comparable to a conventional radix-2 SAR ADC. A prototype radix-3/radix-2 based hybrid SAR ADC with the proposed technique is designed and fabricated in 40nm CMOS technology. It achieves an SNDR of 56.9 dB and consumes only 0.38 mW power at 30MS/s, leading to a Walden figure of merit of 21.5 fJ/conv-step.



Low Power High Speed Adc Design Techniques In Scaled Cmos Process


Low Power High Speed Adc Design Techniques In Scaled Cmos Process
DOWNLOAD
Author : Jeonggoo Song
language : en
Publisher:
Release Date : 2017

Low Power High Speed Adc Design Techniques In Scaled Cmos Process written by Jeonggoo Song and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.


The power consumption of a single-channel successive approximation register (SAR) analog-to-digital (ADC) tends to linearly increase with its sampling rate (f[subscript s]), when f[subscript s] is small. However, when f[subscript s] passes a certain point for a given technology node, the ADC power P increases at much higher rate and the normalized power efficiency (P/f[subscript s]) starts to degrade rapidly. To enhance the conversion speed of SAR ADC, while maintaining a good power efficiency, this thesis presents speed-enhancing techniques for SAR ADC in nano-scale CMOS technologies. First chapter presents a 2b/cycle hybrid SAR architecture with only 1 differential capacitor-DAC (CDAC). Unlike prior multi-bit/cycle SAR works that make use of only the DAC differential mode (DM) voltage, the proposed architecture exploits both the DM and the common mode (CM). By using two degrees of freedom, 2b/cycle conversion technique can boost the f[subscript s] of the ADC without any additional DAC arrays. High-speed ADCs can boost the conversion speed not only by increasing the f[subscript s] of a single-channel ADC, but also by time-interleaving multiple ADC sub-channels running at a lower rate. For an N-channel time-interleaved (TI) SAR ADC operating at f[subscript s], each sub-SAR channel only needs to operate at f[subscript s]=N. Therefore, each sub-SAR can operate in the linear power versus speed region, leading to a significant power saving compared to a single-channel ADC running at the same sampling rate. Despite of its power efficiency, TI-ADC suffers from mismatches among sub-ADC channels, including gain, offset, and timing mismatches. Among them, timing skew is one of the most difficult errors to calibrate as it is nontrivial to extract and its induced error depends on both the frequency and the amplitude of the input signal. Second chapter of this thesis presents a TI-SAR with a fast variance-based timing-skew calibration technique. It uses a single-comparator based window detector (WD) to calibrate the timing skew. The WD suppresses variance estimation errors and allow precise variance estimation from a significantly small number of samples. It has low-hardware cost and orders of magnitude faster convergence speed compared to prior variance-based timing-skew calibration technique. The last chapter presents another TI-SAR with mean absolute deviation (MAD) based timing-skew calibration technique. In addition to all the advantages presented with the fast variance-based timing-skew calibration technique, the proposed technique further reduces the digital computation power by 50% by eliminating the squaring operations, which are essential in variance-based calibration technique



Techniques For Low Power High Performance Analog To Digital Converters


Techniques For Low Power High Performance Analog To Digital Converters
DOWNLOAD
Author : Sunghyuk Lee
language : en
Publisher:
Release Date : 2014

Techniques For Low Power High Performance Analog To Digital Converters written by Sunghyuk Lee and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with categories.


Analog-to-digital converters (ADCs) are essential building blocks in many electronic systems which require digital signal processing and storage of analog signals. Traditionally, ADCs are considered a power hungry circuit. This thesis investigates ADC design techniques to achieve high-performance with low power consumption. Two designs are demonstrated. The first design is a voltage scalable zero-crossing based pipelined ADC. The zero-crossing based circuit technique is modified and optimized to improve the limited ADC resolution in nano-scaled CMOS technology. The proposed unidirectional charge transfer scheme allows faster and more energy efficient operation by eliminating unnecessary charging and discharging of the capacitors. Furthermore, the reduced transient disturbance at the beginning of the fine charge transfer phase improves the accuracy of operation. Power supply scaling enhances power efficiency at low sampling rates much like in digital circuits and widens the conversion frequency range where the ADC operates with highest efficiency. The second design is a high speed time-interleaved (TI) SAR ADC with background timing-skew calibration. A time-interleaved structure is employed to improve the effective sampling rate without sacrificing energy efficiency. SAR ADCs are used for each channel to make good use of device scaling. The proposed ADC architecture incorporates a flash ADC operating at the full sampling rate of the TI ADC. The flash ADC output is multiplexed to resolve MSBs of the SAR channels. Because the full-speed flash ADC does not suffer from timing-skew errors, the flash ADC output is also used as the timing reference to estimate the timing-skew of the SAR ADCs.



Digitally Assisted Techniques For Nyquist Rate Analog To Digital Converters


Digitally Assisted Techniques For Nyquist Rate Analog To Digital Converters
DOWNLOAD
Author : Rabeeh Majidi
language : en
Publisher:
Release Date : 2015

Digitally Assisted Techniques For Nyquist Rate Analog To Digital Converters written by Rabeeh Majidi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with categories.


Abstract: With the advance of technology and rapid growth of digital systems, low power high speed analog-to- digital converters with great accuracy are in demand. To achieve high effective number of bits Analog-to-Digital Converter (ADC) calibration as a time consuming process is a potential bottleneck for designs. This dissertation presentsa fully digital background calibration algorithm for a 7- bit redundant flash ADC using split structure and look-up table based correction. Redundant comparators are used in the flash ADC design of this work in order to tolerate large offset voltages while minimizing signal input capacitance. The split ADC structure helps by eliminating the unknown input signal from the calibration path. The flash ADC has been designed in 180nm IBM CMOS technology and fabricated through MOSIS. This work was supported by Analog Devices, Wilmington, MA. While much research on ADC design has concentrated on increasing resolution and sample rate, there are many applications (e.g. biomedical devices and sensor networks) that do not require high performance but do require low power energy efficient ADCs. This dissertation also explores on design of a low quiescent current 100k Sps Successive Approximation (SAR) ADC that has been used as an error detection ADC for an automotive application in 350nm CD (CMOS-DMOS) technology. This work was supported by ON Semiconductor Corp, East Greenwich, RI.



Design Techniques For Low Power Sar Adcs In Nano Scale Cmos Technologies


Design Techniques For Low Power Sar Adcs In Nano Scale Cmos Technologies
DOWNLOAD
Author : Long Chen (Doctorate in Electrical and Computer engineering)
language : en
Publisher:
Release Date : 2016

Design Techniques For Low Power Sar Adcs In Nano Scale Cmos Technologies written by Long Chen (Doctorate in Electrical and Computer engineering) and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.


This thesis presents low power design techniques for successive approximation register (SAR) analog-to-digital converters (ADCs) in nano-scale CMOS technologies. Low power SAR ADCs face two major challenges especially at high resolutions: (1) increased comparator power to suppress the noise, and (2) increased DAC switching energy due to the large DAC size. To improve the comparator’s power efficiency, a statistical estimation based comparator noise reduction technique is presented. It allows a low power and noisy comparator to achieve high signal-to-noise ratio (SNR) by estimating the conversion residue. A first prototype ADC in 65nm CMOS has been developed to validate the proposed noise reduction technique. It achieves 4.5 fJ/conv-step Walden figure of merit and 64.5 dB signal-to-noise and distortion ratio (SNDR). In addition, a bidirectional single-side switching technique is developed to reduce the DAC switching power. It can reduce the DAC switching power and the total number of unit capacitors by 86% and 75%, respectively. A second prototype ADC with the proposed switching technique is designed and fabricated in 180nm CMOS technology. It achieves an SNDR of 63.4 dB and consumes only 24 Wat 1MS/s, leading to aWalden figure of merit of 19.9 fJ/conv-step. This thesis also presents an improved loop-unrolled SAR ADC, which works at high frequency with reduced SAR logic power and delay. It employs the bidirectional single-side switching technique to reduce the comparator common-mode voltage variation. In addition, it uses a Vcm-adaptive offset calibration technique which can accurately calibrate comparator’s offset at its operating Vcm. A prototype ADC designed in 40nm CMOS achieves 35 dB at 700 MS/s sampling rate and consumes only 0.95 mW, leading to a Walden figure of merit of 30 fJ/conv-step.



Charge Sharing Sar Adcs For Low Voltage Low Power Applications


Charge Sharing Sar Adcs For Low Voltage Low Power Applications
DOWNLOAD
Author : Taimur Rabuske
language : en
Publisher: Springer
Release Date : 2016-08-02

Charge Sharing Sar Adcs For Low Voltage Low Power Applications written by Taimur Rabuske and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-02 with Technology & Engineering categories.


This book introduces readers to the potential of charge-sharing (CS) successive approximation register (SAR) analog-to-digital converters (ADCs), while providing extensive analysis of the factors that limit the performance of the CS topology. The authors present guidelines and useful techniques for mitigating the limitations of the architecture, while focusing on the implementation under restricted power budgets and voltage supplies.



Low Power High Speed Adcs For Nanometer Cmos Integration


Low Power High Speed Adcs For Nanometer Cmos Integration
DOWNLOAD
Author : Zhiheng Cao
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-07-15

Low Power High Speed Adcs For Nanometer Cmos Integration written by Zhiheng Cao and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-07-15 with Technology & Engineering categories.


Low-Power High-Speed ADCs for Nanometer CMOS Integration is about the design and implementation of ADC in nanometer CMOS processes that achieve lower power consumption for a given speed and resolution than previous designs, through architectural and circuit innovations that take advantage of unique features of nanometer CMOS processes. A phase lock loop (PLL) clock multiplier has also been designed using new circuit techniques and successfully tested. 1) A 1.2V, 52mW, 210MS/s 10-bit two-step ADC in 130nm CMOS occupying 0.38mm2. Using offset canceling comparators and capacitor networks implemented with small value interconnect capacitors to replace resistor ladder/multiplexer in conventional sub-ranging ADCs, it achieves 74dB SFDR for 10MHz and 71dB SFDR for 100MHz input. 2) A 32mW, 1.25GS/s 6-bit ADC with 2.5GHz internal clock in 130nm CMOS. A new type of architecture that combines flash and SAR enables the lowest power consumption, 6-bit >1GS/s ADC reported to date. This design can be a drop-in replacement for existing flash ADCs since it does require any post-processing or calibration step and has the same latency as flash. 3) A 0.4ps-rms-jitter (integrated from 3kHz to 300MHz offset for >2.5GHz) 1-3GHz tunable, phase-noise programmable clock-multiplier PLL for generating sampling clock to the SAR ADC. A new loop filter structure enables phase error preamplification to lower PLL in-band noise without increasing loop filter capacitor size.