[PDF] Low Rank Semidefinite Programming - eBooks Review

Low Rank Semidefinite Programming


Low Rank Semidefinite Programming
DOWNLOAD

Download Low Rank Semidefinite Programming PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Low Rank Semidefinite Programming book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Low Rank Semidefinite Programming


Low Rank Semidefinite Programming
DOWNLOAD
Author : Alex Lemon
language : en
Publisher:
Release Date : 2016

Low Rank Semidefinite Programming written by Alex Lemon and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Ranking and selection (Statistics) categories.


Finding low-rank solutions of semidefinite programs is important in many applications. For example, semidefinite programs that arise as relaxations of polynomial optimization problems are exact relaxations when the semidefinite program has a rank-1 solution. Unfortunately, computing a minimum-rank solution of a semidefinite program is an NP-hard problem. In this paper we review the theory of low-rank semidefinite programming, presenting theorems that guarantee the existence of a low-rank solution, heuristics for computing low-rank solutions, and algorithms for finding low-rank approximate solutions. Then we present applications of the theory to trust-region problems and signal processing.



Low Rank Semidefinite Programming


Low Rank Semidefinite Programming
DOWNLOAD
Author : Alex Lemon
language : en
Publisher: Now Publishers
Release Date : 2016-05-04

Low Rank Semidefinite Programming written by Alex Lemon and has been published by Now Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-04 with Mathematics categories.


Finding low-rank solutions of semidefinite programs is important in many applications. For example, semidefinite programs that arise as relaxations of polynomial optimization problems are exact relaxations when the semidefinite program has a rank-1 solution. Unfortunately, computing a minimum-rank solution of a semidefinite program is an NP-hard problem. This monograph reviews the theory of low-rank semidefinite programming, presenting theorems that guarantee the existence of a low-rank solution, heuristics for computing low-rank solutions, and algorithms for finding low-rank approximate solutions. It then presents applications of the theory to trust-region problems and signal processing.



Low Rank Approximation


Low Rank Approximation
DOWNLOAD
Author : Ivan Markovsky
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-11-19

Low Rank Approximation written by Ivan Markovsky and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-11-19 with Technology & Engineering categories.


Data Approximation by Low-complexity Models details the theory, algorithms, and applications of structured low-rank approximation. Efficient local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. Much of the text is devoted to describing the applications of the theory including: system and control theory; signal processing; computer algebra for approximate factorization and common divisor computation; computer vision for image deblurring and segmentation; machine learning for information retrieval and clustering; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; and psychometrics for factor analysis. Software implementation of the methods is given, making the theory directly applicable in practice. All numerical examples are included in demonstration files giving hands-on experience and exercises and MATLAB® examples assist in the assimilation of the theory.



Computational Enhancements And Applications In Low Rank Semidefinite Programming


Computational Enhancements And Applications In Low Rank Semidefinite Programming
DOWNLOAD
Author : Changhui Choi
language : en
Publisher:
Release Date : 2000

Computational Enhancements And Applications In Low Rank Semidefinite Programming written by Changhui Choi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with categories.




Algorithmic Foundations Of Robotics Xiv


Algorithmic Foundations Of Robotics Xiv
DOWNLOAD
Author : Steven M. LaValle
language : en
Publisher: Springer Nature
Release Date : 2021-02-08

Algorithmic Foundations Of Robotics Xiv written by Steven M. LaValle and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-08 with Technology & Engineering categories.


This proceedings book helps bring insights from this array of technical sub-topics together, as advanced robot algorithms draw on the combined expertise of many fields—including control theory, computational geometry and topology, geometrical and physical modeling, reasoning under uncertainty, probabilistic algorithms, game theory, and theoretical computer science. Intelligent robots and autonomous systems depend on algorithms that efficiently realize functionalities ranging from perception to decision making, from motion planning to control. The works collected in this SPAR book represent the state of the art in algorithmic robotics. They originate from papers accepted to the 14th International Workshop on the Algorithmic Foundations of Robotics (WAFR), traditionally a biannual, single-track meeting of leading researchers in the field of robotics. WAFR has always served as a premiere venue for the publication of some of robotics’ most important, fundamental, and lasting algorithmic contributions, ensuring the rapid circulation of new ideas. Though an in-person meeting was planned for June 15–17, 2020, in Oulu, Finland, the event ended up being canceled owing to the infeasibility of international travel during the global COVID-19 crisis.



Convex Optimization Euclidean Distance Geometry


Convex Optimization Euclidean Distance Geometry
DOWNLOAD
Author : Jon Dattorro
language : en
Publisher: Meboo Publishing USA
Release Date : 2005

Convex Optimization Euclidean Distance Geometry written by Jon Dattorro and has been published by Meboo Publishing USA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.


The study of Euclidean distance matrices (EDMs) fundamentally asks what can be known geometrically given onlydistance information between points in Euclidean space. Each point may represent simply locationor, abstractly, any entity expressible as a vector in finite-dimensional Euclidean space.The answer to the question posed is that very much can be known about the points;the mathematics of this combined study of geometry and optimization is rich and deep.Throughout we cite beacons of historical accomplishment.The application of EDMs has already proven invaluable in discerning biological molecular conformation.The emerging practice of localization in wireless sensor networks, the global positioning system (GPS), and distance-based pattern recognitionwill certainly simplify and benefit from this theory.We study the pervasive convex Euclidean bodies and their various representations.In particular, we make convex polyhedra, cones, and dual cones more visceral through illustration, andwe study the geometric relation of polyhedral cones to nonorthogonal bases biorthogonal expansion.We explain conversion between halfspace- and vertex-descriptions of convex cones,we provide formulae for determining dual cones,and we show how classic alternative systems of linear inequalities or linear matrix inequalities and optimality conditions can be explained by generalized inequalities in terms of convex cones and their duals.The conic analogue to linear independence, called conic independence, is introducedas a new tool in the study of classical cone theory; the logical next step in the progression:linear, affine, conic.Any convex optimization problem has geometric interpretation.This is a powerful attraction: the ability to visualize geometry of an optimization problem.We provide tools to make visualization easier.The concept of faces, extreme points, and extreme directions of convex Euclidean bodiesis explained here, crucial to understanding convex optimization.The convex cone of positive semidefinite matrices, in particular, is studied in depth.We mathematically interpret, for example,its inverse image under affine transformation, and we explainhow higher-rank subsets of its boundary united with its interior are convex.The Chapter on "Geometry of convex functions",observes analogies between convex sets and functions:The set of all vector-valued convex functions is a closed convex cone.Included among the examples in this chapter, we show how the real affinefunction relates to convex functions as the hyperplane relates to convex sets.Here, also, pertinent results formultidimensional convex functions are presented that are largely ignored in the literature;tricks and tips for determining their convexityand discerning their geometry, particularly with regard to matrix calculus which remains largely unsystematizedwhen compared with the traditional practice of ordinary calculus.Consequently, we collect some results of matrix differentiation in the appendices.The Euclidean distance matrix (EDM) is studied,its properties and relationship to both positive semidefinite and Gram matrices.We relate the EDM to the four classical axioms of the Euclidean metric;thereby, observing the existence of an infinity of axioms of the Euclidean metric beyondthe triangle inequality. We proceed byderiving the fifth Euclidean axiom and then explain why furthering this endeavoris inefficient because the ensuing criteria (while describing polyhedra)grow linearly in complexity and number.Some geometrical problems solvable via EDMs,EDM problems posed as convex optimization, and methods of solution arepresented;\eg, we generate a recognizable isotonic map of the United States usingonly comparative distance information (no distance information, only distance inequalities).We offer a new proof of the classic Schoenberg criterion, that determines whether a candidate matrix is an EDM. Our proofrelies on fundamental geometry; assuming, any EDM must correspond to a list of points contained in some polyhedron(possibly at its vertices) and vice versa.It is not widely known that the Schoenberg criterion implies nonnegativity of the EDM entries; proved here.We characterize the eigenvalues of an EDM matrix and then devisea polyhedral cone required for determining membership of a candidate matrix(in Cayley-Menger form) to the convex cone of Euclidean distance matrices (EDM cone); \ie,a candidate is an EDM if and only if its eigenspectrum belongs to a spectral cone for EDM^N.We will see spectral cones are not unique.In the chapter "EDM cone", we explain the geometric relationship betweenthe EDM cone, two positive semidefinite cones, and the elliptope.We illustrate geometric requirements, in particular, for projection of a candidate matrixon a positive semidefinite cone that establish its membership to the EDM cone. The faces of the EDM cone are described,but still open is the question whether all its faces are exposed as they are for the positive semidefinite cone.The classic Schoenberg criterion, relating EDM and positive semidefinite cones, isrevealed to be a discretized membership relation (a generalized inequality, a new Farkas''''''''-like lemma)between the EDM cone and its ordinary dual. A matrix criterion for membership to the dual EDM cone is derived thatis simpler than the Schoenberg criterion.We derive a new concise expression for the EDM cone and its dual involvingtwo subspaces and a positive semidefinite cone."Semidefinite programming" is reviewedwith particular attention to optimality conditionsof prototypical primal and dual conic programs,their interplay, and the perturbation method of rank reduction of optimal solutions(extant but not well-known).We show how to solve a ubiquitous platonic combinatorial optimization problem from linear algebra(the optimal Boolean solution x to Ax=b)via semidefinite program relaxation.A three-dimensional polyhedral analogue for the positive semidefinite cone of 3X3 symmetricmatrices is introduced; a tool for visualizing in 6 dimensions.In "EDM proximity"we explore methods of solution to a few fundamental and prevalentEuclidean distance matrix proximity problems; the problem of finding that Euclidean distance matrix closestto a given matrix in the Euclidean sense.We pay particular attention to the problem when compounded with rank minimization.We offer a new geometrical proof of a famous result discovered by Eckart \& Young in 1936 regarding Euclideanprojection of a point on a subset of the positive semidefinite cone comprising all positive semidefinite matriceshaving rank not exceeding a prescribed limit rho.We explain how this problem is transformed to a convex optimization for any rank rho.



Semidefinite Optimization And Convex Algebraic Geometry


Semidefinite Optimization And Convex Algebraic Geometry
DOWNLOAD
Author : Grigoriy Blekherman
language : en
Publisher: SIAM
Release Date : 2013-03-21

Semidefinite Optimization And Convex Algebraic Geometry written by Grigoriy Blekherman and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-21 with Mathematics categories.


An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.



Modeling And Optimization Of Interdependent Energy Infrastructures


Modeling And Optimization Of Interdependent Energy Infrastructures
DOWNLOAD
Author : Wei Wei
language : en
Publisher: Springer Nature
Release Date : 2019-10-22

Modeling And Optimization Of Interdependent Energy Infrastructures written by Wei Wei and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-22 with Technology & Engineering categories.


This book opens up new ways to develop mathematical models and optimization methods for interdependent energy infrastructures, ranging from the electricity network, natural gas network, district heating network, and electrified transportation network. The authors provide methods to help analyze, design, and operate the integrated energy system more efficiently and reliably, and constitute a foundational basis for decision support tools for the next-generation energy network. Chapters present new operation models of the coupled energy infrastructure and the application of new methodologies including convex optimization, robust optimization, and equilibrium constrained optimization. Four appendices provide students and researchers with helpful tutorials on advanced optimization methods: Basics of Linear and Conic Programs; Formulation Tricks in Integer Programming; Basics of Robust Optimization; Equilibrium Problems. This book provides theoretical foundation and technical applications for energy system integration, and the the interdisciplinary research presented will be useful to readers in many fields including electrical engineering, civil engineering, and industrial engineering.



An Introduction To Optimization On Smooth Manifolds


An Introduction To Optimization On Smooth Manifolds
DOWNLOAD
Author : Nicolas Boumal
language : en
Publisher: Cambridge University Press
Release Date : 2023-03-16

An Introduction To Optimization On Smooth Manifolds written by Nicolas Boumal and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-16 with Mathematics categories.


Optimization on Riemannian manifolds-the result of smooth geometry and optimization merging into one elegant modern framework-spans many areas of science and engineering, including machine learning, computer vision, signal processing, dynamical systems and scientific computing. This text introduces the differential geometry and Riemannian geometry concepts that will help students and researchers in applied mathematics, computer science and engineering gain a firm mathematical grounding to use these tools confidently in their research. Its charts-last approach will prove more intuitive from an optimizer's viewpoint, and all definitions and theorems are motivated to build time-tested optimization algorithms. Starting from first principles, the text goes on to cover current research on topics including worst-case complexity and geodesic convexity. Readers will appreciate the tricks of the trade for conducting research and for numerical implementations sprinkled throughout the book.



Lectures On Convex Optimization


Lectures On Convex Optimization
DOWNLOAD
Author : Yurii Nesterov
language : en
Publisher: Springer
Release Date : 2018-11-19

Lectures On Convex Optimization written by Yurii Nesterov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-19 with Mathematics categories.


This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author’s lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.