Machine Learning Automation With Tpot

DOWNLOAD
Download Machine Learning Automation With Tpot PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning Automation With Tpot book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Machine Learning Automation With Tpot
DOWNLOAD
Author : Dario Radecic
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-05-07
Machine Learning Automation With Tpot written by Dario Radecic and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-07 with Computers categories.
Discover how TPOT can be used to handle automation in machine learning and explore the different types of tasks that TPOT can automate Key FeaturesUnderstand parallelism and how to achieve it in Python.Learn how to use neurons, layers, and activation functions and structure an artificial neural network.Tune TPOT models to ensure optimum performance on previously unseen data.Book Description The automation of machine learning tasks allows developers more time to focus on the usability and reactivity of the software powered by machine learning models. TPOT is a Python automated machine learning tool used for optimizing machine learning pipelines using genetic programming. Automating machine learning with TPOT enables individuals and companies to develop production-ready machine learning models cheaper and faster than with traditional methods. With this practical guide to AutoML, developers working with Python on machine learning tasks will be able to put their knowledge to work and become productive quickly. You'll adopt a hands-on approach to learning the implementation of AutoML and associated methodologies. Complete with step-by-step explanations of essential concepts, practical examples, and self-assessment questions, this book will show you how to build automated classification and regression models and compare their performance to custom-built models. As you advance, you'll also develop state-of-the-art models using only a couple of lines of code and see how those models outperform all of your previous models on the same datasets. By the end of this book, you'll have gained the confidence to implement AutoML techniques in your organization on a production level. What you will learnGet to grips with building automated machine learning modelsBuild classification and regression models with impressive accuracy in a short timeDevelop neural network classifiers with AutoML techniquesCompare AutoML models with traditional, manually developed models on the same datasetsCreate robust, production-ready modelsEvaluate automated classification models based on metrics such as accuracy, recall, precision, and f1-scoreGet hands-on with deployment using Flask-RESTful on localhostWho this book is for Data scientists, data analysts, and software developers who are new to machine learning and want to use it in their applications will find this book useful. This book is also for business users looking to automate business tasks with machine learning. Working knowledge of the Python programming language and beginner-level understanding of machine learning are necessary to get started.
Automated Machine Learning
DOWNLOAD
Author : Frank Hutter
language : en
Publisher: Springer
Release Date : 2019-05-17
Automated Machine Learning written by Frank Hutter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-17 with Computers categories.
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
Feature Engineering For Modern Machine Learning With Scikit Learn
DOWNLOAD
Author : Cuantum Technologies LLC
language : en
Publisher: Packt Publishing Ltd
Release Date : 2025-01-23
Feature Engineering For Modern Machine Learning With Scikit Learn written by Cuantum Technologies LLC and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-23 with Computers categories.
Master feature engineering with Scikit-Learn! Learn to preprocess, transform, and automate data for machine learning. Boost predictive accuracy with pipelines, clustering, and advanced techniques for real-world projects. Key Features Comprehensive guide to feature engineering for Scikit-Learn Hands-on projects for real-world applications Focus on automation, pipelines, and deep learning integration Book DescriptionFeature engineering is essential for building robust predictive models. This book delves into practical techniques for transforming raw data into powerful features using Scikit-Learn. You'll explore automation, deep learning integrations, and advanced topics like feature selection and model evaluation. Learn to handle real-world data challenges, enhance accuracy, and streamline your workflows. Through hands-on projects, readers will gain practical experience with techniques such as clustering, pipelines, and feature selection, applied to domains like retail and healthcare. Step-by-step instructions ensure a comprehensive learning journey, from foundational concepts to advanced automation and hybrid modeling approaches. By combining theory with real-world applications, the book equips data professionals with the tools to unlock the full potential of machine learning models. Whether working with structured datasets or integrating deep learning features, this guide provides actionable insights to tackle any data transformation challenge effectively.What you will learn Create data-driven features for better ML models Apply Scikit-Learn pipelines for automation Use clustering and feature selection effectively Handle imbalanced datasets with advanced techniques Leverage regularization for feature selection Utilize deep learning for feature extraction Who this book is for Data scientists, machine learning engineers, and analytics professionals looking to improve predictive model performance will find this book invaluable. Prior experience with Python and basic machine learning concepts is recommended. Familiarity with Scikit-Learn is helpful but not required.
Advanced Artificial Intelligence And Robotics
DOWNLOAD
Author : Prof. V.S. Manjula
language : en
Publisher: Orange book publication
Release Date : 2025-04-08
Advanced Artificial Intelligence And Robotics written by Prof. V.S. Manjula and has been published by Orange book publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-08 with Computers categories.
The book is divided into six chapters. The behavioral perspective of "human cognition" is covered first, followed by a detailed discussion of the instruments and methods needed to make it intelligently possible for machines. Enough information has been addressed in the traditional chapters on search, symbolic logic, planning, and machine learning, including the most recent studies on the topics. The contemporary facets of soft computing have been presented from the very beginning and covered in a way that is somewhat informal, making it easy for a novice to understand. Non-monotonic and spatiotemporal reasoning, knowledge acquisition, verification, Non-monotonic and spatiotemporal thinking, knowledge acquisition, verification, validation, and maintenance challenges, the realization of cognition on machines, and the design of AI machines are among the topics of AI research that are discussed in the book. The two case studies that conclude the book—one on "criminal investigation of expert systems" and the other on "navigational planning of robots"—focus mostly on the implementation of intelligent systems through the use of the techniques discussed in the book.
Handbook Of Evolutionary Machine Learning
DOWNLOAD
Author : Wolfgang Banzhaf
language : en
Publisher: Springer Nature
Release Date : 2023-11-01
Handbook Of Evolutionary Machine Learning written by Wolfgang Banzhaf and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-01 with Computers categories.
This book, written by leading international researchers of evolutionary approaches to machine learning, explores various ways evolution can address machine learning problems and improve current methods of machine learning. Topics in this book are organized into five parts. The first part introduces some fundamental concepts and overviews of evolutionary approaches to the three different classes of learning employed in machine learning. The second addresses the use of evolutionary computation as a machine learning technique describing methodologic improvements for evolutionary clustering, classification, regression, and ensemble learning. The third part explores the connection between evolution and neural networks, in particular the connection to deep learning, generative and adversarial models as well as the exciting potential of evolution with large language models. The fourth part focuses on the use of evolutionary computation for supporting machine learning methods. This includes methodological developments for evolutionary data preparation, model parametrization, design, and validation. The final part covers several chapters on applications in medicine, robotics, science, finance, and other disciplines. Readers find reviews of application areas and can discover large-scale, real-world applications of evolutionary machine learning to a variety of problem domains. This book will serve as an essential reference for researchers, postgraduate students, practitioners in industry and all those interested in evolutionary approaches to machine learning.
Genetic Programming Theory And Practice Xiv
DOWNLOAD
Author : Rick Riolo
language : en
Publisher: Springer
Release Date : 2018-10-24
Genetic Programming Theory And Practice Xiv written by Rick Riolo and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-24 with Computers categories.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Chapters in this volume include: Similarity-based Analysis of Population Dynamics in GP Performing Symbolic Regression Hybrid Structural and Behavioral Diversity Methods in GP Multi-Population Competitive Coevolution for Anticipation of Tax Evasion Evolving Artificial General Intelligence for Video Game Controllers A Detailed Analysis of a PushGP Run Linear Genomes for Structured Programs Neutrality, Robustness, and Evolvability in GP Local Search in GP PRETSL: Distributed Probabilistic Rule Evolution for Time-Series Classification Relational Structure in Program Synthesis Problems with Analogical Reasoning An Evolutionary Algorithm for Big Data Multi-Class Classification Problems A Generic Framework for Building Dispersion Operators in the Semantic Space Assisting Asset Model Development with Evolutionary Augmentation Building Blocks of Machine Learning Pipelines for Initialization of a Data Science Automation Tool Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
Automated Machine Learning
DOWNLOAD
Author : Adnan Masood
language : en
Publisher: Packt Publishing
Release Date : 2021-02-18
Automated Machine Learning written by Adnan Masood and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-18 with categories.
Get to grips with automated machine learning and adopt a hands-on approach to AutoML implementation and associated methodologies Key Features: Get up to speed with AutoML using OSS, Azure, AWS, GCP, or any platform of your choice Eliminate mundane tasks in data engineering and reduce human errors in machine learning models Find out how you can make machine learning accessible for all users to promote decentralized processes Book Description: Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort. This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you'll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle. By the end of this machine learning book, you'll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks. What You Will Learn: Explore AutoML fundamentals, underlying methods, and techniques Assess AutoML aspects such as algorithm selection, auto featurization, and hyperparameter tuning in an applied scenario Find out the difference between cloud and operations support systems (OSS) Implement AutoML in enterprise cloud to deploy ML models and pipelines Build explainable AutoML pipelines with transparency Understand automated feature engineering and time series forecasting Automate data science modeling tasks to implement ML solutions easily and focus on more complex problems Who this book is for: Citizen data scientists, machine learning developers, artificial intelligence enthusiasts, or anyone looking to automatically build machine learning models using the features offered by open source tools, Microsoft Azure Machine Learning, AWS, and Google Cloud Platform will find this book useful. Beginner-level knowledge of building ML models is required to get the best out of this book. Prior experience in using Enterprise cloud is beneficial.
Mastering Automated Machine Learning Concepts Tools And Techniques
DOWNLOAD
Author : Peter Jones
language : en
Publisher: Walzone Press
Release Date : 2025-01-17
Mastering Automated Machine Learning Concepts Tools And Techniques written by Peter Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-17 with Computers categories.
"Mastering Automated Machine Learning: Concepts, Tools, and Techniques" is an essential guide for anyone seeking to unlock the full potential of Automated Machine Learning (AutoML), a groundbreaking technology transforming the field of data science. By automating complex and time-consuming processes, AutoML is making machine learning more efficient and accessible to a broader range of professionals. This book offers an in-depth exploration of core principles, state-of-the-art methodologies, and the practical tools that define AutoML. From data preparation and feature engineering to model selection, tuning, and deployment, readers will acquire a thorough understanding of how AutoML streamlines the entire machine learning pipeline. Whether you're a data scientist, machine learning engineer, or software developer eager to harness the power of automation, "Mastering Automated Machine Learning" provides the insights you need to implement cutting-edge AutoML solutions. With practical examples and guidance on using Python-based frameworks, this book equips you to revolutionize your data science projects. Embrace the future of machine learning and optimize your workflows with "Mastering Automated Machine Learning: Concepts, Tools, and Techniques."
Machine Learning And Neural Networks Essentials
DOWNLOAD
Author : Dr.R.Balamanigandan
language : en
Publisher: SK Research Group of Companies
Release Date : 2024-12-27
Machine Learning And Neural Networks Essentials written by Dr.R.Balamanigandan and has been published by SK Research Group of Companies this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-27 with Computers categories.
Dr.R.Balamanigandan, Professor & Head, Department of Neural Networks, Institute of Computer Science & Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India. Dr.T.B.Sivakumar, Associate Professor, Department of Computer Science and Engineering, School of Computing, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India. Mr.S.Thumilvannan, Assistant Professor, Department of Computer Science and Engineering, Kings Engineering College, Chennai, Tamil Nadu, India. Mrs.A.Anto Sagaya Priscilla, Research Scholar, Department of Neural Networks, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
Applications Of Evolutionary Computation
DOWNLOAD
Author : Giovanni Squillero
language : en
Publisher: Springer
Release Date : 2016-03-22
Applications Of Evolutionary Computation written by Giovanni Squillero and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-22 with Computers categories.
The two volumes LNCS 9597 and 9598 constitute the refereed conference proceedings of the 19th European Conference on the Applications of Evolutionary Computation, EvoApplications 2016, held in Porto, Portugal, in March/April 2016, co-located with the Evo* 2016 events EuroGP, EvoCOP, and EvoMUSART. The 57 revised full papers presented together with 17 poster papers were carefully reviewed and selected from 115 submissions. EvoApplications 2016 consisted of the following 13 tracks: EvoBAFIN (natural computing methods in business analytics and finance), EvoBIO (evolutionary computation, machine learning and data mining in computational biology), EvoCOMNET (nature-inspired techniques for telecommunication networks and other parallel and distributed systems), EvoCOMPLEX (evolutionary algorithms and complex systems), EvoENERGY (evolutionary computation in energy applications), EvoGAMES (bio-inspired algorithms in games), EvoIASP (evolutionary computation in image analysis, signal processing, and pattern recognition), EvoINDUSTRY (nature-inspired techniques in industrial settings), EvoNUM (bio-inspired algorithms for continuous parameter optimization), EvoPAR (parallel implementation of evolutionary algorithms), EvoRISK (computational intelligence for risk management, security and defence applications), EvoROBOT (evolutionary robotics), and EvoSTOC (evolutionary algorithms in stochastic and dynamic environments).