[PDF] Machine Learning For Big Data Analysis - eBooks Review

Machine Learning For Big Data Analysis


Machine Learning For Big Data Analysis
DOWNLOAD

Download Machine Learning For Big Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning For Big Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Advances In Machine Learning For Big Data Analysis


Advances In Machine Learning For Big Data Analysis
DOWNLOAD
Author : Satchidananda Dehuri
language : en
Publisher: Springer Nature
Release Date : 2022-02-24

Advances In Machine Learning For Big Data Analysis written by Satchidananda Dehuri and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-24 with Technology & Engineering categories.


This book focuses on research aspects of ensemble approaches of machine learning techniques that can be applied to address the big data problems. In this book, various advancements of machine learning algorithms to extract data-driven decisions from big data in diverse domains such as the banking sector, healthcare, social media, and video surveillance are presented in several chapters. Each of them has separate functionalities, which can be leveraged to solve a specific set of big data applications. This book is a potential resource for various advances in the field of machine learning and data science to solve big data problems with many objectives. It has been observed from the literature that several works have been focused on the advancement of machine learning in various fields like biomedical, stock prediction, sentiment analysis, etc. However, limited discussions have been carried out on application of advanced machine learning techniques in solving big data problems.



Applications Of Machine Learning In Big Data Analytics And Cloud Computing


Applications Of Machine Learning In Big Data Analytics And Cloud Computing
DOWNLOAD
Author : Subhendu Kumar Pani
language : en
Publisher: CRC Press
Release Date : 2022-09-01

Applications Of Machine Learning In Big Data Analytics And Cloud Computing written by Subhendu Kumar Pani and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-01 with Computers categories.


Cloud Computing and Big Data technologies have become the new descriptors of the digital age. The global amount of digital data has increased more than nine times in volume in just five years and by 2030 its volume may reach a staggering 65 trillion gigabytes. This explosion of data has led to opportunities and transformation in various areas such as healthcare, enterprises, industrial manufacturing and transportation. New Cloud Computing and Big Data tools endow researchers and analysts with novel techniques and opportunities to collect, manage and analyze the vast quantities of data. In Cloud and Big Data Analytics, the two areas of Swarm Intelligence and Deep Learning are a developing type of Machine Learning techniques that show enormous potential for solving complex business problems. Deep Learning enables computers to analyze large quantities of unstructured and binary data and to deduce relationships without requiring specific models or programming instructions. This book introduces the state-of-the-art trends and advances in the use of Machine Learning in Cloud and Big Data Analytics. The book will serve as a reference for Data Scientists, systems architects, developers, new researchers and graduate level students in Computer and Data science. The book will describe the concepts necessary to understand current Machine Learning issues, challenges and possible solutions as well as upcoming trends in Big Data Analytics.



Machine Learning And Big Data Analytics Paradigms Analysis Applications And Challenges


Machine Learning And Big Data Analytics Paradigms Analysis Applications And Challenges
DOWNLOAD
Author : Aboul Ella Hassanien
language : en
Publisher: Springer Nature
Release Date : 2020-12-14

Machine Learning And Big Data Analytics Paradigms Analysis Applications And Challenges written by Aboul Ella Hassanien and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-14 with Computers categories.


This book is intended to present the state of the art in research on machine learning and big data analytics. The accepted chapters covered many themes including artificial intelligence and data mining applications, machine learning and applications, deep learning technology for big data analytics, and modeling, simulation, and security with big data. It is a valuable resource for researchers in the area of big data analytics and its applications.



Big Data Analytics Systems Algorithms Applications


Big Data Analytics Systems Algorithms Applications
DOWNLOAD
Author : C.S.R. Prabhu
language : en
Publisher: Springer Nature
Release Date : 2019-10-14

Big Data Analytics Systems Algorithms Applications written by C.S.R. Prabhu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-14 with Computers categories.


This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy. With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered. In turn, the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition. Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.



The 2021 International Conference On Machine Learning And Big Data Analytics For Iot Security And Privacy


The 2021 International Conference On Machine Learning And Big Data Analytics For Iot Security And Privacy
DOWNLOAD
Author : John Macintyre
language : en
Publisher: Springer Nature
Release Date : 2021-10-27

The 2021 International Conference On Machine Learning And Big Data Analytics For Iot Security And Privacy written by John Macintyre and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-27 with Computers categories.


This book presents the proceedings of the 2020 2nd International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy (SPIoT-2021), online conference, on 30 October 2021. It provides comprehensive coverage of the latest advances and trends in information technology, science and engineering, addressing a number of broad themes, including novel machine learning and big data analytics methods for IoT security, data mining and statistical modelling for the secure IoT and machine learning-based security detecting protocols, which inspire the development of IoT security and privacy technologies. The contributions cover a wide range of topics: analytics and machine learning applications to IoT security; data-based metrics and risk assessment approaches for IoT; data confidentiality and privacy in IoT; and authentication and access control for data usage in IoT. Outlining promising future research directions, the book is a valuable resource for students, researchers and professionals and provides a useful reference guide for newcomers to the IoT security and privacy field.



Big Data Technologies And Applications


Big Data Technologies And Applications
DOWNLOAD
Author : Borko Furht
language : en
Publisher: Springer
Release Date : 2016-09-16

Big Data Technologies And Applications written by Borko Furht and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-16 with Computers categories.


The objective of this book is to introduce the basic concepts of big data computing and then to describe the total solution of big data problems using HPCC, an open-source computing platform. The book comprises 15 chapters broken into three parts. The first part, Big Data Technologies, includes introductions to big data concepts and techniques; big data analytics; and visualization and learning techniques. The second part, LexisNexis Risk Solution to Big Data, focuses on specific technologies and techniques developed at LexisNexis to solve critical problems that use big data analytics. It covers the open source High Performance Computing Cluster (HPCC Systems®) platform and its architecture, as well as parallel data languages ECL and KEL, developed to effectively solve big data problems. The third part, Big Data Applications, describes various data intensive applications solved on HPCC Systems. It includes applications such as cyber security, social network analytics including fraud, Ebola spread modeling using big data analytics, unsupervised learning, and image classification. The book is intended for a wide variety of people including researchers, scientists, programmers, engineers, designers, developers, educators, and students. This book can also be beneficial for business managers, entrepreneurs, and investors.



Machine Learning For Big Data Analysis


Machine Learning For Big Data Analysis
DOWNLOAD
Author : Siddhartha Bhattacharyya
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2018-12-17

Machine Learning For Big Data Analysis written by Siddhartha Bhattacharyya and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-17 with Computers categories.


This volume comprises six well-versed contributed chapters devoted to report the latest fi ndings on the applications of machine learning for big data analytics. Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. The possible challenges in this direction include capture, storage, analysis, data curation, search, sharing, transfer, visualization, querying, updating and information privacy. Big data analytics is the process of examining large and varied data sets - i.e., big data - to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful information that can help organizations make more-informed business decisions. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent research.



Advanced Deep Learning Applications In Big Data Analytics


Advanced Deep Learning Applications In Big Data Analytics
DOWNLOAD
Author : Bouarara, Hadj Ahmed
language : en
Publisher: IGI Global
Release Date : 2020-10-16

Advanced Deep Learning Applications In Big Data Analytics written by Bouarara, Hadj Ahmed and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-16 with Computers categories.


Interest in big data has swelled within the scholarly community as has increased attention to the internet of things (IoT). Algorithms are constructed in order to parse and analyze all this data to facilitate the exchange of information. However, big data has suffered from problems in connectivity, scalability, and privacy since its birth. The application of deep learning algorithms has helped process those challenges and remains a major issue in today’s digital world. Advanced Deep Learning Applications in Big Data Analytics is a pivotal reference source that aims to develop new architecture and applications of deep learning algorithms in big data and the IoT. Highlighting a wide range of topics such as artificial intelligence, cloud computing, and neural networks, this book is ideally designed for engineers, data analysts, data scientists, IT specialists, programmers, marketers, entrepreneurs, researchers, academicians, and students.



Big Data Analytics Techniques For Market Intelligence


Big Data Analytics Techniques For Market Intelligence
DOWNLOAD
Author : Darwish, Dina
language : en
Publisher: IGI Global
Release Date : 2024-01-04

Big Data Analytics Techniques For Market Intelligence written by Darwish, Dina and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-04 with Computers categories.


The ever-expanding realm of Big Data poses a formidable challenge for academic scholars and professionals due to the sheer magnitude and diversity of data types, along with the continuous influx of information from various sources. Extracting valuable insights from this vast and complex dataset is crucial for organizations to uncover market intelligence and make informed decisions. However, without the proper guidance and understanding of Big Data analytics techniques and methodologies, scholars may struggle to navigate this landscape and maximize the potential benefits of their research. In response to this pressing need, Professor Dina Darwish presents Big Data Analytics Techniques for Market Intelligence, a groundbreaking book that addresses the specific challenges faced by scholars and professionals in the field. Through a comprehensive exploration of various techniques and methodologies, this book offers a solution to the hurdles encountered in extracting meaningful information from Big Data. Covering the entire lifecycle of Big Data analytics, including preprocessing, analysis, visualization, and utilization of results, the book equips readers with the knowledge and tools necessary to unlock the power of Big Data and generate valuable market intelligence. With real-world case studies and a focus on practical guidance, scholars and professionals can effectively leverage Big Data analytics to drive strategic decision-making and stay at the forefront of this rapidly evolving field.



Big Data Analytics Methods


Big Data Analytics Methods
DOWNLOAD
Author : Peter Ghavami
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2019-12-16

Big Data Analytics Methods written by Peter Ghavami and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-16 with Business & Economics categories.


Big Data Analytics Methods unveils secrets to advanced analytics techniques ranging from machine learning, random forest classifiers, predictive modeling, cluster analysis, natural language processing (NLP), Kalman filtering and ensembles of models for optimal accuracy of analysis and prediction. More than 100 analytics techniques and methods provide big data professionals, business intelligence professionals and citizen data scientists insight on how to overcome challenges and avoid common pitfalls and traps in data analytics. The book offers solutions and tips on handling missing data, noisy and dirty data, error reduction and boosting signal to reduce noise. It discusses data visualization, prediction, optimization, artificial intelligence, regression analysis, the Cox hazard model and many analytics using case examples with applications in the healthcare, transportation, retail, telecommunication, consulting, manufacturing, energy and financial services industries. This book's state of the art treatment of advanced data analytics methods and important best practices will help readers succeed in data analytics.