Mariadb With Python Gui

DOWNLOAD
Download Mariadb With Python Gui PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mariadb With Python Gui book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Mariadb With Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: SPARTA PUBLISHING
Release Date : 2019-08-17
Mariadb With Python Gui written by Vivian Siahaan and has been published by SPARTA PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-17 with Computers categories.
This is a computer programming book using Python that is focused on effective learning. Intentionally designed for various levels of interest and ability of learners, this book is suitable for students, engineers, and even researchers in a variety of disciplines. No advanced programming experience is needed, and only a few school-level programming skill are needed. The step-by-step guide in this book is expected to help the reader's confidence to become a programmer who can solve database programming problems. A progressive project is provided to demonstrate how to apply the concepts of MariaDB using Python. In second chapter, you will learn PyQt that consists of a number of Python bindings for cross-platform applications that combine all the strengths of Qt and Python. By using PyQt, you can include all Qt libraries in Python code, so you can write GUI applications in Python. In other words, you can use PyQt to access all the features provided by Qt through Python code. Because PyQt depends on the Qt libraries at run time, you need to install PyQt. In third chapter, you will learn: How to create the initial three tables project in the School database: Teacher, Class, and Subject tables; How to create database configuration files; How to create a Python GUI for inserting and editing tables; How to create a Python GUI to join and query the three tables. In fourth chapter, you will learn how to: Create a main form to connect all forms; Create a project will add three more tables to the school database: Student, Parent, and Tuition tables; Create a Python GUI for inserting and editing tables; Create a Python GUI to join and query over the three tables. In the last chapter, you will join the six classes, Teacher, TClass, Subject, Student, Parent, and Tuition and make queries over those tables.
A Walkthrough Database Driven Programming With Python Gui For Pragmatic Programmers
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE Publishing
Release Date : 2019-11-15
A Walkthrough Database Driven Programming With Python Gui For Pragmatic Programmers written by Vivian Siahaan and has been published by BALIGE Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-15 with Computers categories.
This book covers how to implement SQLite and SQL Server driven programming with Python GUI. Deliberately designed for various levels of programming skill, this book is suitable for students, engineers, and even researchers in various disciplines. There is no need for advanced programming experience, and school-level programming skills are needed. In the first chapter, you will learn to use several widgets in PyQt5: Display a welcome message; Use the Radio Button widget; Grouping radio buttons; Displays options in the form of a check box; and Display two groups of check boxes. In chapter two, you will learn to use the following topics: Using Signal / Slot Editor; Copy and place text from one Line Edit widget to another; Convert data types and make a simple calculator; Use the Spin Box widget; Use scrollbars and sliders; Using the Widget List; Select a number of list items from one Widget List and display them on another Widget List widget; Add items to the Widget List; Perform operations on the Widget List; Use the Combo Box widget; Displays data selected by the user from the Calendar Widget; Creating a hotel reservation application; and Display tabular data using Table Widgets. In chapter three, you will learn: How to create the initial three tables project in the School database: Teacher, Class, and Subject tables; How to create database configuration files; How to create a Python GUI for inserting and editing tables; How to create a Python GUI to join and query the three tables. In chapter four, you will learn how to: Create a main form to connect all forms; Create a project will add three more tables to the school database: Student, Parent, and Tuition tables; Create a Python GUI for inserting and editing tables; Create a Python GUI to join and query over the three tables. In chapter five, you will join the six classes, Teacher, TClass, Subject, Student, Parent, and Tuition and make queries over those tables. In chapter six, you will create dan configure database. In this chapter, you will create Suspect table in crime database. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for this table. In chapter seven, you will create a table with the name Feature_Extraction, which has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. The six fields (except keys) will have VARBINARY(MAX) data type. You will also create GUI to display, edit, insert, and delete for this table. In chapter eight, you will create two tables, Police and Investigator. The Police table has six columns: police_id (primary key), province, city, address, telephone, and photo. The Investigator table has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for both tables. In the last chapter, you will create two tables, Victim and Case_File. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File table has seven columns: case_file_id (primary key), suspect_id (foreign key), police_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. You will create GUI to display, edit, insert, and delete for both tables as well.
Fluent Opencv Python Gui With Sql Server
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: SPARTA PUBLISHING
Release Date : 2019-09-21
Fluent Opencv Python Gui With Sql Server written by Vivian Siahaan and has been published by SPARTA PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-21 with Computers categories.
This book is SQL Server version of our previous works. This book consists of a series of step-by-step tutorials for creating mini projects in integrating pyqt, python, opencv, and SQL Server database. By studying this book, you will understand how to program python GUIs involving opencv and databases in applications. This book is suitable for beginners, students, engineers, and even researchers in a variety of disciplines. No advanced programming experience is needed, and only a few school-level programming skills are needed. In the first chapter, you will learn to use several widgets in PyQt5: Display a welcome message; Use the Radio Button widget; Grouping radio buttons; Displays options in the form of a check box; and Display two groups of check boxes. In chapter two, you will learn to use the following topics: Using Signal / Slot Editor; Copy and place text from one Line Edit widget to another; Convert data types and make a simple calculator; Use the Spin Box widget; Use scrollbars and sliders; Using the Widget List; Select a number of list items from one Widget List and display them on another Widget List widget; Add items to the Widget List; Perform operations on the Widget List; Use the Combo Box widget; Displays data selected by the user from the Calendar Widget; Creating a hotel reservation application; and Display tabular data using Table Widgets. In chapter three, you will create dan configure database. In this chapter, you will create Suspect table in crime database. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for this table. In chapter four, you will create a table with the name Feature_Extraction, which has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. The six fields (except keys) will have VARBINARY(MAX) data type. You will also create GUI to display, edit, insert, and delete for this table. In chapter five, you will create two tables, Police and Investigator. The Police table has six columns: police_id (primary key), province, city, address, telephone, and photo. The Investigator table has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for both tables. In chapter six, you will create two tables, Victim and Case_File. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File table has seven columns: case_file_id (primary key), suspect_id (foreign key), police_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. You will create GUI to display, edit, insert, and delete for both tables as well.
The Fast Way To Learn Python Gui With Mariadb And Sqlite
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: SPARTA PUBLISHING
Release Date : 2020-01-15
The Fast Way To Learn Python Gui With Mariadb And Sqlite written by Vivian Siahaan and has been published by SPARTA PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-15 with Computers categories.
This book explains relational theory in practice, and demonstrates through two projects how you can apply it to your use of MariaDB and SQLite databases. This book covers the important requirements of teaching databases with a practical and progressive perspective. This book offers the straightforward, practical answers you need to help you do your job. This hands-on tutorial/reference/guide to MariaDB and SQLite is not only perfect for students and beginners, but it also works for experienced developers who aren't getting the most from both databases. In designing a GUI and as an IDE, you will make use Qt Designer. In the first chapter, you will learn to use several widgets in PyQt5: Display a welcome message; Use the Radio Button widget; Grouping radio buttons; Displays options in the form of a check box; and Display two groups of check boxes. In chapter two, you will learn to use the following topics: Using Signal / Slot Editor; Copy and place text from one Line Edit widget to another; Convert data types and make a simple calculator; Use the Spin Box widget; Use scrollbars and sliders; Using the Widget List; Select a number of list items from one Widget List and display them on another Widget List widget; Add items to the Widget List; Perform operations on the Widget List; Use the Combo Box widget; Displays data selected by the user from the Calendar Widget; Creating a hotel reservation application; and Display tabular data using Table Widgets. In chapter three, you will learn: How to create the initial three tables project in the School database: Teacher, Class, and Subject tables; How to create database configuration files; How to create a Python GUI for inserting and editing tables; How to create a Python GUI to join and query the three tables. In chapter four, you will learn how to: Create a main form to connect all forms; Create a project will add three more tables to the school database: Student, Parent, and Tuition tables; Create a Python GUI for inserting and editing tables; Create a Python GUI to join and query over the three tables. In chapter five, you will join the six classes, Teacher, TClass, Subject, Student, Parent, and Tuition and make queries over those tables. In chapter six, you will create dan configure database. In this chapter, you will create Suspect table in crime database. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for this table. In chapter seven, you will create a table with the name Feature_Extraction, which has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. The six fields (except keys) will have a VARCHAR data type (200). You will also create GUI to display, edit, insert, and delete for this table. In chapter eight, you will create two tables, Police and Investigator. The Police table has six columns: police_id (primary key), province, city, address, telephone, and photo. The Investigator table has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for both tables. In chapter nine, you will create two tables, Victim and Case_File. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File table has seven columns: case_file_id (primary key), suspect_id (foreign key), police_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. You will create GUI to display, edit, insert, and delete for both tables as well.
Think Pyqt A Smarter Way To Explore Mariadb And Sqlite Driven Programming
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: SPARTA PUBLISHING
Release Date : 2019-11-25
Think Pyqt A Smarter Way To Explore Mariadb And Sqlite Driven Programming written by Vivian Siahaan and has been published by SPARTA PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-25 with Computers categories.
This book explains relational theory in practice, and demonstrates through two projects how you can apply it to your use of MariaDB and SQLite databases. This book covers the important requirements of teaching databases with a practical and progressive perspective. This book offers the straightforward, practical answers you need to help you do your job. This hands-on tutorial/reference/guide to MariaDB and SQLite is not only perfect for students and beginners, but it also works for experienced developers who aren't getting the most from both databases. In designing a GUI and as an IDE, you will make use Qt Designer. In the first chapter, you will learn to use several widgets in PyQt5: Display a welcome message; Use the Radio Button widget; Grouping radio buttons; Displays options in the form of a check box; and Display two groups of check boxes. In chapter two, you will learn to use the following topics: Using Signal / Slot Editor; Copy and place text from one Line Edit widget to another; Convert data types and make a simple calculator; Use the Spin Box widget; Use scrollbars and sliders; Using the Widget List; Select a number of list items from one Widget List and display them on another Widget List widget; Add items to the Widget List; Perform operations on the Widget List; Use the Combo Box widget; Displays data selected by the user from the Calendar Widget; Creating a hotel reservation application; and Display tabular data using Table Widgets. In chapter three, you will learn: How to create the initial three tables project in the School database: Teacher, Class, and Subject tables; How to create database configuration files; How to create a Python GUI for inserting and editing tables; How to create a Python GUI to join and query the three tables. In chapter four, you will learn how to: Create a main form to connect all forms; Create a project will add three more tables to the school database: Student, Parent, and Tuition tables; Create a Python GUI for inserting and editing tables; Create a Python GUI to join and query over the three tables. In chapter five, you will join the six classes, Teacher, TClass, Subject, Student, Parent, and Tuition and make queries over those tables. In chapter six, you will create dan configure database. In this chapter, you will create Suspect table in crime database. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for this table. In chapter seven, you will create a table with the name Feature_Extraction, which has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. The six fields (except keys) will have a VARCHAR data type (200). You will also create GUI to display, edit, insert, and delete for this table. In chapter eight, you will create two tables, Police and Investigator. The Police table has six columns: police_id (primary key), province, city, address, telephone, and photo. The Investigator table has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for both tables. In chapter nine, you will create two tables, Victim and Case_File. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File table has seven columns: case_file_id (primary key), suspect_id (foreign key), police_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. You will create GUI to display, edit, insert, and delete for both tables as well.
Learn From Scratch Backpropagation Neural Networks Using Python Gui Mariadb
DOWNLOAD
Author : Hamzan Wadi
language : en
Publisher: Turida Publisher
Release Date :
Learn From Scratch Backpropagation Neural Networks Using Python Gui Mariadb written by Hamzan Wadi and has been published by Turida Publisher this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.
This book provides a practical explanation of the backpropagation neural networks and how it can be implemented for data prediction and data classification. The discussion in this book is presented in step by step so that it will help readers understand the fundamental of the backpropagation neural networks and its steps. This book is very suitable for students, researchers, and anyone who want to learn and implement the backpropagation neural networks for data prediction and data classification using PYTHON GUI and MariaDB. The discussion in this book will provide readers deep understanding about the backpropagation neural networks architecture and its parameters. The readers will be guided to understand the steps of the backpropagation neural networks for data prediction and data classification through case examples. In addition, readers are also guided step by step to implement the backpropagation neural networks for data prediction and data classification using PYTHON GUI and MariaDB. The readers will be guided to create their own backpropagation neural networks class and build their complete applications for data prediction and data classification. This book consists of three cases which are realized into complete projects using the Python GUI and MariaDB. The three cases that will be learned in this book are as follow. 1. Sales prediction using the backpropagation neural networks. 2. Earthquake data prediction using the backpropagation neural networks. 3. Fruit quality classification using the backpropagation neural networks. Each case in this book is equipped with a mathematical calculation that will help the reader understand each step that must be taken. The cases in this book are realized into three types of applications which are command window based application, GUI based application, and database application using Python GUI and MariaDB. The final result of this book is that the readers are able to realize each step of the backpropagation neural networks for data prediction and data classification. In Addition, the readers also are able to create the backpropagation neural networks applications which consists of three types of applications which are command window based application, GUI based application, and database application using Python GUI and MariaDB.
Python Gui With Sql Server For Absolute Beginners
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: SPARTA PUBLISHING
Release Date : 2019-09-20
Python Gui With Sql Server For Absolute Beginners written by Vivian Siahaan and has been published by SPARTA PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-20 with Computers categories.
This book is SQL Server-based python programming. Microsoft SQL Server is robust relational database management system used by so many organizations of various sizes including top fortune 100 companies. SQL Server is a relational database management system (RDBMS) developed and marketed by Microsoft. As a database server, the primary function of the SQL Server is to store and retrieve data used by other applications. Deliberately designed for various levels of programming skill, this book is suitable for students, engineers, and even researchers in various disciplines. There is no need for advanced programming experience, and school-level programming skills are needed. In the first chapter, you will learn to use several widgets in PyQt5: Display a welcome message; Use the Radio Button widget; Grouping radio buttons; Displays options in the form of a check box; and Display two groups of check boxes. In chapter two, you will learn to use the following topics: Using Signal / Slot Editor; Copy and place text from one Line Edit widget to another; Convert data types and make a simple calculator; Use the Spin Box widget; Use scrollbars and sliders; Using the Widget List; Select a number of list items from one Widget List and display them on another Widget List widget; Add items to the Widget List; Perform operations on the Widget List; Use the Combo Box widget; Displays data selected by the user from the Calendar Widget; Creating a hotel reservation application; and Display tabular data using Table Widgets. In third chapter, you will learn: How to create the initial three tables project in the School database: Teacher, Class, and Subject tables; How to create database configuration files; How to create a Python GUI for inserting and editing tables; How to create a Python GUI to join and query the three tables. In fourth chapter, you will learn how to: Create a main form to connect all forms; Create a project will add three more tables to the school database: Student, Parent, and Tuition tables; Create a Python GUI for inserting and editing tables; Create a Python GUI to join and query over the three tables. In the last chapter, you will join the six classes, Teacher, TClass, Subject, Student, Parent, and Tuition and make queries over those tables.
The Beginner S Guide To Learn Python Gui With Mysql And Sqlite
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: SPARTA PUBLISHING
Release Date : 2020-01-14
The Beginner S Guide To Learn Python Gui With Mysql And Sqlite written by Vivian Siahaan and has been published by SPARTA PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-14 with Computers categories.
This book explains relational theory in practice, and demonstrates through two projects how you can apply it to your use of MySQL and SQLite databases. This book covers the important requirements of teaching databases with a practical and progressive perspective. This book offers the straightforward, practical answers you need to help you do your job. This hands-on tutorial/reference/guide to MySQL and SQLite is not only perfect for students and beginners, but it also works for experienced developers who aren't getting the most from both databases. In designing a GUI and as an IDE, you will make use Qt Designer. In the first chapter, you will learn to use several widgets in PyQt5: Display a welcome message; Use the Radio Button widget; Grouping radio buttons; Displays options in the form of a check box; and Display two groups of check boxes. In chapter two, you will learn to use the following topics: Using Signal / Slot Editor; Copy and place text from one Line Edit widget to another; Convert data types and make a simple calculator; Use the Spin Box widget; Use scrollbars and sliders; Using the Widget List; Select a number of list items from one Widget List and display them on another Widget List widget; Add items to the Widget List; Perform operations on the Widget List; Use the Combo Box widget; Displays data selected by the user from the Calendar Widget; Creating a hotel reservation application; and Display tabular data using Table Widgets. In chapter three, you will learn: How to create the initial three tables project in the School database: Teacher, Class, and Subject tables; How to create database configuration files; How to create a Python GUI for inserting and editing tables; How to create a Python GUI to join and query the three tables. In chapter four, you will learn how to: Create a main form to connect all forms; Create a project will add three more tables to the school database: Student, Parent, and Tuition tables; Create a Python GUI for inserting and editing tables; Create a Python GUI to join and query over the three tables. In chapter five, you will join the six classes, Teacher, TClass, Subject, Student, Parent, and Tuition and make queries over those tables. In chapter six, you will create dan configure database. In this chapter, you will create Suspect table in crime database. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for this table. In chapter seven, you will create a table with the name Feature_Extraction, which has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. The six fields (except keys) will have VARBINARY(MAX) data type. You will also create GUI to display, edit, insert, and delete for this table. In chapter eight, you will create two tables, Police and Investigator. The Police table has six columns: police_id (primary key), province, city, address, telephone, and photo. The Investigator table has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for both tables. In the last chapter, you will create two tables, Victim and Case_File. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File table has seven columns: case_file_id (primary key), suspect_id (foreign key), police_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. You will create GUI to display, edit, insert, and delete for both tables.
Building Two Desktop Applications Using Python Gui And Mysql
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: SPARTA PUBLISHING
Release Date : 2019-11-07
Building Two Desktop Applications Using Python Gui And Mysql written by Vivian Siahaan and has been published by SPARTA PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-07 with Computers categories.
In this book, you will create two desktop applications using Python GUI and MySQL. In this book, you will learn how to build from scratch a MySQL database management system using PyQt. In designing a GUI, you will make use of the Qt Designer tool. Gradually and step by step, you will be taught how to use MySQL in Python. In the first three chapters, you will learn Basic MySQL statements including how to implement querying data, sorting data, filtering data, joining tables, grouping data, subquerying data, dan setting operators. Aside from learning basic SQL statements, you will also learn step by step how to develop stored procedures in MySQL. First, we introduce you to the stored procedure concept and discuss when you should use it. Then, we show you how to use the basic elements of the procedure code such as create procedure statement, if-else, case, loop, stored procedure’s parameters. In the fourth chapter, you will learn: How PyQt and Qt Designer are used to create Python GUIs; How to create a basic Python GUI that utilizes a Line Edit and a Push Button. In the fifth chapter, you will study: Creating the initial three table in the School database project: Teacher table, Class table, and Subject table; Creating database configuration files; Creating a Python GUI for viewing and navigating the contents of each table. Creating a Python GUI for inserting and editing tables; and Creating a Python GUI to merge and query the three tables. In chapter six, you will learn: Creating the main form to connect all forms; Creating a project that will add three more tables to the school database: the Student table, the Parent table, and the Tuition table; Creating a Python GUI to view and navigate the contents of each table; Creating a Python GUI for editing, inserting, and deleting records in each table; Create a Python GUI to merge and query the three tables and all six tables. In chapter seven, you will create new database dan configure it. In this chapter, you will create Suspect table in crime database. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for this table. In chapter eight, you will create a table with the name Feature_Extraction, which has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. The six fields (except keys) will have a VARCHAR data type (200). You will also create GUI to display, edit, insert, and delete for this table. In chapter nine, you will create two tables, Police and Investigator. The Police table has six columns: police_id (primary key), province, city, address, telephone, and photo. The Investigator table has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for both tables. In chapter ten, you will create two tables, Victim and Case_File. The Vicbtim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File table has seven columns: case_file_id (primary key), suspect_id (foreign key), police_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. You will create GUI to display, edit, insert, and delete for both tables as well.
Learn From Scratch Machine Learning With Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2021-03-03
Learn From Scratch Machine Learning With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-03 with Computers categories.
In this book, you will learn how to use NumPy, Pandas, OpenCV, Scikit-Learn and other libraries to how to plot graph and to process digital image. Then, you will learn how to classify features using Perceptron, Adaline, Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN) models. You will also learn how to extract features using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principal Component Analysis (KPCA) algorithms and use them in machine learning. In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. You will also learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, Tutorial Steps To Implement Image Denoising, Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, Tutorial Steps To Extract Detected Objects, Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). In Chapter 4, In this tutorial, you will learn how to use Pandas, NumPy and other libraries to perform simple classification using perceptron and Adaline (adaptive linear neuron). The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron, Tutorial Steps To Implement Perceptron with PyQt, Tutorial Steps To Implement Adaline (ADAptive LInear NEuron), and Tutorial Steps To Implement Adaline with PyQt. In Chapter 5, you will learn how to use the scikit-learn machine learning library, which provides a wide variety of machine learning algorithms via a user-friendly Python API and to perform classification using perceptron, Adaline (adaptive linear neuron), and other models. The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron Using Scikit-Learn, Tutorial Steps To Implement Perceptron Using Scikit-Learn with PyQt, Tutorial Steps To Implement Logistic Regression Model, Tutorial Steps To Implement Logistic Regression Model with PyQt, Tutorial Steps To Implement Logistic Regression Model Using Scikit-Learn with PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Using Scikit-Learn, Tutorial Steps To Implement Decision Tree (DT) Using Scikit-Learn, Tutorial Steps To Implement Random Forest (RF) Using Scikit-Learn, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Using Scikit-Learn. In Chapter 6, you will learn how to use Pandas, NumPy, Scikit-Learn, and other libraries to implement different approaches for reducing the dimensionality of a dataset using different feature selection techniques. You will learn about three fundamental techniques that will help us to summarize the information content of a dataset by transforming it onto a new feature subspace of lower dimensionality than the original one. Data compression is an important topic in machine learning, and it helps us to store and analyze the increasing amounts of data that are produced and collected in the modern age of technology. You will learn the following topics: Principal Component Analysis (PCA) for unsupervised data compression, Linear Discriminant Analysis (LDA) as a supervised dimensionality reduction technique for maximizing class separability, Nonlinear dimensionality reduction via Kernel Principal Component Analysis (KPCA). You will learn: 6.1 Tutorial Steps To Implement Principal Component Analysis (PCA), Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn, Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Linear Discriminant Analysis (LDA), Tutorial Steps To Implement Linear Discriminant Analysis (LDA) with Scikit-Learn, Tutorial Steps To Implement Linear Discriminant Analysis (LDA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn, and Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn with PyQt. In Chapter 7, you will learn how to use Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset. You will learn: Tutorial Steps To Load MNIST Dataset, Tutorial Steps To Load MNIST Dataset with PyQt, Tutorial Steps To Implement Perceptron With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement , Tutorial Steps To Implement Support Vector Machine (SVM) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt.