Markov Chains And Invariant Probabilities

DOWNLOAD
Download Markov Chains And Invariant Probabilities PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Markov Chains And Invariant Probabilities book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Markov Chains And Invariant Probabilities
DOWNLOAD
Author : Onesimo Hernandez-Lerma
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-02-24
Markov Chains And Invariant Probabilities written by Onesimo Hernandez-Lerma and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-02-24 with Mathematics categories.
This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).
Markov Chains And Invariant Probabilities
DOWNLOAD
Author : Onésimo Hernández-Lerma
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06
Markov Chains And Invariant Probabilities written by Onésimo Hernández-Lerma and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).
Markov Chains And Stochastic Stability
DOWNLOAD
Author : Sean Meyn
language : en
Publisher: Cambridge University Press
Release Date : 2009-04-02
Markov Chains And Stochastic Stability written by Sean Meyn and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-02 with Mathematics categories.
New up-to-date edition of this influential classic on Markov chains in general state spaces. Proofs are rigorous and concise, the range of applications is broad and knowledgeable, and key ideas are accessible to practitioners with limited mathematical background. New commentary by Sean Meyn, including updated references, reflects developments since 1996.
Introduction To Stochastic Processes
DOWNLOAD
Author : Gregory F. Lawler
language : en
Publisher: CRC Press
Release Date : 2018-10-03
Introduction To Stochastic Processes written by Gregory F. Lawler and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-03 with Mathematics categories.
Emphasizing fundamental mathematical ideas rather than proofs, Introduction to Stochastic Processes, Second Edition provides quick access to important foundations of probability theory applicable to problems in many fields. Assuming that you have a reasonable level of computer literacy, the ability to write simple programs, and the access to software for linear algebra computations, the author approaches the problems and theorems with a focus on stochastic processes evolving with time, rather than a particular emphasis on measure theory. For those lacking in exposure to linear differential and difference equations, the author begins with a brief introduction to these concepts. He proceeds to discuss Markov chains, optimal stopping, martingales, and Brownian motion. The book concludes with a chapter on stochastic integration. The author supplies many basic, general examples and provides exercises at the end of each chapter. New to the Second Edition: Expanded chapter on stochastic integration that introduces modern mathematical finance Introduction of Girsanov transformation and the Feynman-Kac formula Expanded discussion of Itô's formula and the Black-Scholes formula for pricing options New topics such as Doob's maximal inequality and a discussion on self similarity in the chapter on Brownian motion Applicable to the fields of mathematics, statistics, and engineering as well as computer science, economics, business, biological science, psychology, and engineering, this concise introduction is an excellent resource both for students and professionals.
Markov Chains
DOWNLOAD
Author : Bruno Sericola
language : en
Publisher: John Wiley & Sons
Release Date : 2013-08-05
Markov Chains written by Bruno Sericola and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-05 with Mathematics categories.
Markov chains are a fundamental class of stochastic processes. They are widely used to solve problems in a large number of domains such as operational research, computer science, communication networks and manufacturing systems. The success of Markov chains is mainly due to their simplicity of use, the large number of available theoretical results and the quality of algorithms developed for the numerical evaluation of many metrics of interest. The author presents the theory of both discrete-time and continuous-time homogeneous Markov chains. He carefully examines the explosion phenomenon, the Kolmogorov equations, the convergence to equilibrium and the passage time distributions to a state and to a subset of states. These results are applied to birth-and-death processes. He then proposes a detailed study of the uniformization technique by means of Banach algebra. This technique is used for the transient analysis of several queuing systems. Contents 1. Discrete-Time Markov Chains 2. Continuous-Time Markov Chains 3. Birth-and-Death Processes 4. Uniformization 5. Queues About the Authors Bruno Sericola is a Senior Research Scientist at Inria Rennes – Bretagne Atlantique in France. His main research activity is in performance evaluation of computer and communication systems, dependability analysis of fault-tolerant systems and stochastic models.
Random Walks Brownian Motion And Interacting Particle Systems
DOWNLOAD
Author : H. Kesten
language : en
Publisher: Springer Science & Business Media
Release Date : 1991-06-01
Random Walks Brownian Motion And Interacting Particle Systems written by H. Kesten and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991-06-01 with Mathematics categories.
This collection of articles is dedicated to Frank Spitzer on the occasion of his 65th birthday. The articles, written by a group of his friends, colleagues, former students and coauthors, are intended to demonstrate the major influence Frank has had on probability theory for the last 30 years and most likely will have for many years to come. Frank has always liked new phenomena, clean formulations and elegant proofs. He has created or opened up several research areas and it is not surprising that many people are still working out the consequences of his inventions. By way of introduction we have reprinted some of Frank's seminal articles so that the reader can easily see for himself the point of origin for much of the research presented here. These articles of Frank's deal with properties of Brownian motion, fluctuation theory and potential theory for random walks, and, of course, interacting particle systems. The last area was started by Frank as part of the general resurgence of treating problems of statistical mechanics with rigorous probabilistic tools.
Essentials Of Stochastic Processes
DOWNLOAD
Author : Richard Durrett
language : en
Publisher: Springer
Release Date : 2016-11-07
Essentials Of Stochastic Processes written by Richard Durrett and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-07 with Mathematics categories.
Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Markov Chains
DOWNLOAD
Author : J. R. Norris
language : en
Publisher: Cambridge University Press
Release Date : 1998-07-28
Markov Chains written by J. R. Norris and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-07-28 with Mathematics categories.
Markov chains are central to the understanding of random processes. This is not only because they pervade the applications of random processes, but also because one can calculate explicitly many quantities of interest. This textbook, aimed at advanced undergraduate or MSc students with some background in basic probability theory, focuses on Markov chains and quickly develops a coherent and rigorous theory whilst showing also how actually to apply it. Both discrete-time and continuous-time chains are studied. A distinguishing feature is an introduction to more advanced topics such as martingales and potentials in the established context of Markov chains. There are applications to simulation, economics, optimal control, genetics, queues and many other topics, and exercises and examples drawn both from theory and practice. It will therefore be an ideal text either for elementary courses on random processes or those that are more oriented towards applications.
A Basic Course In Probability Theory
DOWNLOAD
Author : Rabi Bhattacharya
language : en
Publisher: Springer
Release Date : 2017-02-13
A Basic Course In Probability Theory written by Rabi Bhattacharya and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-13 with Mathematics categories.
This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded. General Markov dependent sequences and their convergence to equilibrium is the subject of an entirely new chapter. The introduction of conditional expectation and conditional probability very early in the text maintains the pedagogic innovation of the first edition; conditional expectation is illustrated in detail in the context of an expanded treatment of martingales, the Markov property, and the strong Markov property. Weak convergence of probabilities on metric spaces and Brownian motion are two topics to highlight. A selection of large deviation and/or concentration inequalities ranging from those of Chebyshev, Cramer–Chernoff, Bahadur–Rao, to Hoeffding have been added, with illustrative comparisons of their use in practice. This also includes a treatment of the Berry–Esseen error estimate in the central limit theorem. The authors assume mathematical maturity at a graduate level; otherwise the book is suitable for students with varying levels of background in analysis and measure theory. For the reader who needs refreshers, theorems from analysis and measure theory used in the main text are provided in comprehensive appendices, along with their proofs, for ease of reference. Rabi Bhattacharya is Professor of Mathematics at the University of Arizona. Edward Waymire is Professor of Mathematics at Oregon State University. Both authors have co-authored numerous books, including a series of four upcoming graduate textbooks in stochastic processes with applications.
From Markov Chains To Non Equilibrium Particle Systems
DOWNLOAD
Author : Mufa Chen
language : en
Publisher: World Scientific
Release Date : 2004
From Markov Chains To Non Equilibrium Particle Systems written by Mufa Chen and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Mathematics categories.
This book is representative of the work of Chinese probabilists on probability theory and its applications in physics. It presents a unique treatment of general Markov jump processes: uniqueness, various types of ergodicity, Markovian couplings, reversibility, spectral gap, etc. It also deals with a typical class of non-equilibrium particle systems, including the typical Schlögl model taken from statistical physics. The constructions, ergodicity and phase transitions for this class of Markov interacting particle systems, namely, reaction-diffusion processes, are presented. In this new edition, a large part of the text has been updated and two-and-a-half chapters have been rewritten. The book is self-contained and can be used in a course on stochastic processes for graduate students.