[PDF] Markov Processes And Control Theory - eBooks Review

Markov Processes And Control Theory


Markov Processes And Control Theory
DOWNLOAD

Download Markov Processes And Control Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Markov Processes And Control Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Controlled Markov Processes And Viscosity Solutions


Controlled Markov Processes And Viscosity Solutions
DOWNLOAD
Author : Wendell H. Fleming
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-02-04

Controlled Markov Processes And Viscosity Solutions written by Wendell H. Fleming and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-02-04 with Mathematics categories.


This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.



Stochastic Control Theory


Stochastic Control Theory
DOWNLOAD
Author : Makiko Nisio
language : en
Publisher: Springer
Release Date : 2014-11-27

Stochastic Control Theory written by Makiko Nisio and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-27 with Mathematics categories.


This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-max principle, to be precise). Using semi-discretization arguments, we construct the nonlinear semigroups whose generators provide lower and upper Isaacs equations. Concerning partially observable control problems, we refer to stochastic parabolic equations driven by colored Wiener noises, in particular, the Zakai equation. The existence and uniqueness of solutions and regularities as well as Itô's formula are stated. A control problem for the Zakai equations has a nonlinear semigroup whose generator provides the HJB equation on a Banach space. The value function turns out to be a unique viscosity solution for the HJB equation under mild conditions. This edition provides a more generalized treatment of the topic than does the earlier book Lectures on Stochastic Control Theory (ISI Lecture Notes 9), where time-homogeneous cases are dealt with. Here, for finite time-horizon control problems, DPP was formulated as a one-parameter nonlinear semigroup, whose generator provides the HJB equation, by using a time-discretization method. The semigroup corresponds to the value function and is characterized as the envelope of Markovian transition semigroups of responses for constant control processes. Besides finite time-horizon controls, the book discusses control-stopping problems in the same frameworks.



Markov Processes And Control Theory


Markov Processes And Control Theory
DOWNLOAD
Author : Volker Nollau
language : de
Publisher: de Gruyter
Release Date : 1990-01-14

Markov Processes And Control Theory written by Volker Nollau and has been published by de Gruyter this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990-01-14 with categories.




Semi Markov Processes And Reliability


Semi Markov Processes And Reliability
DOWNLOAD
Author : Nikolaos Limnios
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-02-16

Semi Markov Processes And Reliability written by Nikolaos Limnios and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-02-16 with Technology & Engineering categories.


At first there was the Markov property. The theory of stochastic processes, which can be considered as an exten sion of probability theory, allows the modeling of the evolution of systems through the time. It cannot be properly understood just as pure mathemat ics, separated from the body of experience and examples that have brought it to life. The theory of stochastic processes entered a period of intensive develop ment, which is not finished yet, when the idea of the Markov property was brought in. Not even a serious study of the renewal processes is possible without using the strong tool of Markov processes. The modern theory of Markov processes has its origins in the studies by A. A: Markov (1856-1922) of sequences of experiments "connected in a chain" and in the attempts to describe mathematically the physical phenomenon known as Brownian mo tion. Later, many generalizations (in fact all kinds of weakenings of the Markov property) of Markov type stochastic processes were proposed. Some of them have led to new classes of stochastic processes and useful applications. Let us mention some of them: systems with complete connections [90, 91, 45, 86]; K-dependent Markov processes [44]; semi-Markov processes, and so forth. The semi-Markov processes generalize the renewal processes as well as the Markov jump processes and have numerous applications, especially in relia bility.



Adaptive Markov Control Processes


Adaptive Markov Control Processes
DOWNLOAD
Author : Onesimo Hernandez-Lerma
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Adaptive Markov Control Processes written by Onesimo Hernandez-Lerma and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


This book is concerned with a class of discrete-time stochastic control processes known as controlled Markov processes (CMP's), also known as Markov decision processes or Markov dynamic programs. Starting in the mid-1950swith Richard Bellman, many contributions to CMP's have been made, and applications to engineering, statistics and operations research, among other areas, have also been developed. The purpose of this book is to present some recent developments on the theory of adaptive CMP's, i. e. , CMP's that depend on unknown parameters. Thus at each decision time, the controller or decision-maker must estimate the true parameter values, and then adapt the control actions to the estimated values. We do not intend to describe all aspects of stochastic adaptive control; rather, the selection of material reflects our own research interests. The prerequisite for this book is a knowledgeof real analysis and prob ability theory at the level of, say, Ash (1972) or Royden (1968), but no previous knowledge of control or decision processes is required. The pre sentation, on the other hand, is meant to beself-contained,in the sensethat whenever a result from analysisor probability is used, it is usually stated in full and references are supplied for further discussion, if necessary. Several appendices are provided for this purpose. The material is divided into six chapters. Chapter 1 contains the basic definitions about the stochastic control problems we are interested in; a brief description of some applications is also provided.



Markov Chains And Stochastic Stability


Markov Chains And Stochastic Stability
DOWNLOAD
Author : Sean Meyn
language : en
Publisher: Cambridge University Press
Release Date : 2009-04-02

Markov Chains And Stochastic Stability written by Sean Meyn and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-02 with Mathematics categories.


New up-to-date edition of this influential classic on Markov chains in general state spaces. Proofs are rigorous and concise, the range of applications is broad and knowledgeable, and key ideas are accessible to practitioners with limited mathematical background. New commentary by Sean Meyn, including updated references, reflects developments since 1996.



Examples In Markov Decision Processes


Examples In Markov Decision Processes
DOWNLOAD
Author : A. B. Piunovskiy
language : en
Publisher: World Scientific
Release Date : 2012

Examples In Markov Decision Processes written by A. B. Piunovskiy and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.


This invaluable book provides approximately eighty examples illustrating the theory of controlled discrete-time Markov processes. Except for applications of the theory to real-life problems like stock exchange, queues, gambling, optimal search etc, the main attention is paid to counter-intuitive, unexpected properties of optimization problems. Such examples illustrate the importance of conditions imposed in the theorems on Markov Decision Processes. Many of the examples are based upon examples published earlier in journal articles or textbooks while several other examples are new. The aim was to collect them together in one reference book which should be considered as a complement to existing monographs on Markov decision processes.The book is self-contained and unified in presentation.The main theoretical statements and constructions are provided, and particular examples can be read independently of others. Examples in Markov Decision Processes is an essential source of reference for mathematicians and all those who apply the optimal control theory to practical purposes. When studying or using mathematical methods, the researcher must understand what can happen if some of the conditions imposed in rigorous theorems are not satisfied. Many examples confirming the importance of such conditions were published in different journal articles which are often difficult to find. This book brings together examples based upon such sources, along with several new ones. In addition, it indicates the areas where Markov decision processes can be used. Active researchers can refer to this book on applicability of mathematical methods and theorems. It is also suitable reading for graduate and research students where they will better understand the theory.



Continuous Time Markov Decision Processes


Continuous Time Markov Decision Processes
DOWNLOAD
Author : Xianping Guo
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-09-18

Continuous Time Markov Decision Processes written by Xianping Guo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-18 with Mathematics categories.


Continuous-time Markov decision processes (MDPs), also known as controlled Markov chains, are used for modeling decision-making problems that arise in operations research (for instance, inventory, manufacturing, and queueing systems), computer science, communications engineering, control of populations (such as fisheries and epidemics), and management science, among many other fields. This volume provides a unified, systematic, self-contained presentation of recent developments on the theory and applications of continuous-time MDPs. The MDPs in this volume include most of the cases that arise in applications, because they allow unbounded transition and reward/cost rates. Much of the material appears for the first time in book form.



Hidden Markov Models


Hidden Markov Models
DOWNLOAD
Author : Robert J Elliott
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-09-27

Hidden Markov Models written by Robert J Elliott and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-09-27 with Science categories.


As more applications are found, interest in Hidden Markov Models continues to grow. Following comments and feedback from colleagues, students and other working with Hidden Markov Models the corrected 3rd printing of this volume contains clarifications, improvements and some new material, including results on smoothing for linear Gaussian dynamics. In Chapter 2 the derivation of the basic filters related to the Markov chain are each presented explicitly, rather than as special cases of one general filter. Furthermore, equations for smoothed estimates are given. The dynamics for the Kalman filter are derived as special cases of the authors’ general results and new expressions for a Kalman smoother are given. The Chapters on the control of Hidden Markov Chains are expanded and clarified. The revised Chapter 4 includes state estimation for discrete time Markov processes and Chapter 12 has a new section on robust control.



Markov Processes For Stochastic Modeling


Markov Processes For Stochastic Modeling
DOWNLOAD
Author : Oliver Ibe
language : en
Publisher: Newnes
Release Date : 2013-05-22

Markov Processes For Stochastic Modeling written by Oliver Ibe and has been published by Newnes this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-22 with Mathematics categories.


Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.