[PDF] Mastering Data Mining Techniques - eBooks Review

Mastering Data Mining Techniques


Mastering Data Mining Techniques
DOWNLOAD

Download Mastering Data Mining Techniques PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Data Mining Techniques book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Mastering Data Mining The Art And Science Of Customer Relationship Management


Mastering Data Mining The Art And Science Of Customer Relationship Management
DOWNLOAD
Author : Michael J. A. Berry
language : en
Publisher:
Release Date : 2008-09-01

Mastering Data Mining The Art And Science Of Customer Relationship Management written by Michael J. A. Berry and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-09-01 with categories.


Special Features: · Best-in-class data mining techniques for solving critical problems in all areas of business· Explains how to pick the right data mining techniques for specific problems· Shows how to perform analysis and evaluate results· Features real-world examples from across various industry sectors· Companion Web site with updates on data mining products and service providers About The Book: Companies have invested in building data warehouses to capture vast amounts of customer information. The payoff comes with mining or getting access to the data within this information gold mine to make better business decisions. Readers and reviewers loved Berry and Linoff's first book, Data Mining Techniques, because the authors so clearly illustrate practical techniques with real benefits for improved marketing and sales. Mastering Data Mining takes off from there-assuming readers know the basic techniques covered in the first book, the authors focus on how to best apply these techniques to real business cases. They start with simple applications and work up to the most powerful and sophisticated examples over the course of about 20 cases. (Ralph Kimball used this same approach in his highly successful Data Warehouse Toolkit). As with their first book, Mastering Data Mining is sufficiently technical for database analysts, but is accessible to technically savvy business and marketing managers. It should also appeal to a new breed of database marketing managers.



Data Mining Techniques


Data Mining Techniques
DOWNLOAD
Author : Michael J. A. Berry
language : en
Publisher: John Wiley & Sons
Release Date : 2004-04-09

Data Mining Techniques written by Michael J. A. Berry and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-04-09 with Business & Economics categories.


Many companies have invested in building large databases and data warehouses capable of storing vast amounts of information. This book offers business, sales and marketing managers a practical guide to accessing such information.



Mastering Data Mining Techniques


Mastering Data Mining Techniques
DOWNLOAD
Author : Dhaanyalakshmi Ahuja
language : en
Publisher: Educohack Press
Release Date : 2025-01-03

Mastering Data Mining Techniques written by Dhaanyalakshmi Ahuja and has been published by Educohack Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-03 with Computers categories.


The illustrations in this book are created by “Team Educohack”. Mastering Data Mining Techniques is your comprehensive guide to extracting valuable insights from corporate databases. This book demonstrates how data mining has evolved into an essential tool for modern business, with updates and revisions to all chapters, plus new additions. We provide clear explanations of complex topics using concise language, minimizing jargon and formulas. Technical subjects are illustrated with real-world examples and case studies, offering practical tips for marketing analysts, business managers, and data mining professionals. We cover linear and logistic regression, clustering methods, and an overview of data mining applications, establishing a business context and methodologies common to all projects. Data mining is a crucial step in the KDD process, used for conceptual explanations, related analysis, model construction, data clustering, and time-series trend modeling. We emphasize the importance of measures of interest, detailing their relevance and guiding the data mining process. The book also explores data warehousing and multidimensional databases as interlayers between data sources, allowing integration of online analytical processing and data mining. Starting with an overview of data warehousing concepts, we propose an integrated OLAM architecture.



Data Mining Concepts And Techniques


Data Mining Concepts And Techniques
DOWNLOAD
Author : Jiawei Han
language : en
Publisher: Elsevier
Release Date : 2011-06-09

Data Mining Concepts And Techniques written by Jiawei Han and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-09 with Computers categories.


Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data



Data Mining Techniques With Mastering Data Mining Set


Data Mining Techniques With Mastering Data Mining Set
DOWNLOAD
Author : Michael J. A. Berry
language : en
Publisher: Wiley
Release Date : 2003-05-28

Data Mining Techniques With Mastering Data Mining Set written by Michael J. A. Berry and has been published by Wiley this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-05-28 with Computers categories.




Data Mining


Data Mining
DOWNLOAD
Author : Ian H. Witten
language : en
Publisher: Elsevier
Release Date : 2011-02-03

Data Mining written by Ian H. Witten and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-03 with Computers categories.


Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization



Design And Implementation Of Data Mining Tools


Design And Implementation Of Data Mining Tools
DOWNLOAD
Author : Bhavani Thuraisingham
language : en
Publisher: CRC Press
Release Date : 2009-06-18

Design And Implementation Of Data Mining Tools written by Bhavani Thuraisingham and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-06-18 with Computers categories.


Focusing on three applications of data mining, Design and Implementation of Data Mining Tools explains how to create and employ systems and tools for intrusion detection, Web page surfing prediction, and image classification. Mainly based on the authors' own research work, the book takes a practical approach to the subject.The first part of the boo



Data Mining Methods And Models


Data Mining Methods And Models
DOWNLOAD
Author : Daniel T. Larose
language : en
Publisher: John Wiley & Sons
Release Date : 2006-02-02

Data Mining Methods And Models written by Daniel T. Larose and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-02-02 with Computers categories.


Apply powerful Data Mining Methods and Models to Leverage your Data for Actionable Results Data Mining Methods and Models provides: * The latest techniques for uncovering hidden nuggets of information * The insight into how the data mining algorithms actually work * The hands-on experience of performing data mining on large data sets Data Mining Methods and Models: * Applies a "white box" methodology, emphasizing an understanding of the model structures underlying the softwareWalks the reader through the various algorithms and provides examples of the operation of the algorithms on actual large data sets, including a detailed case study, "Modeling Response to Direct-Mail Marketing" * Tests the reader's level of understanding of the concepts and methodologies, with over 110 chapter exercises * Demonstrates the Clementine data mining software suite, WEKA open source data mining software, SPSS statistical software, and Minitab statistical software * Includes a companion Web site, www.dataminingconsultant.com, where the data sets used in the book may be downloaded, along with a comprehensive set of data mining resources. Faculty adopters of the book have access to an array of helpful resources, including solutions to all exercises, a PowerPoint(r) presentation of each chapter, sample data mining course projects and accompanying data sets, and multiple-choice chapter quizzes. With its emphasis on learning by doing, this is an excellent textbook for students in business, computer science, and statistics, as well as a problem-solving reference for data analysts and professionals in the field. An Instructor's Manual presenting detailed solutions to all the problems in the book is available onlne.



Mastering Social Media Mining With R


Mastering Social Media Mining With R
DOWNLOAD
Author : Sharan Kumar Ravindran
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-09-23

Mastering Social Media Mining With R written by Sharan Kumar Ravindran and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-23 with Computers categories.


Extract valuable data from your social media sites and make better business decisions using R About This Book Explore the social media APIs in R to capture data and tame it Employ the machine learning capabilities of R to gain optimal business value A hands-on guide with real-world examples to help you take advantage of the vast opportunities that come with social media data Who This Book Is For If you have basic knowledge of R in terms of its libraries and are aware of different machine learning techniques, this book is for you. Those with experience in data analysis who are interested in mining social media data will find this book useful. What You Will Learn Access APIs of popular social media sites and extract data Perform sentiment analysis and identify trending topics Measure CTR performance for social media campaigns Implement exploratory data analysis and correlation analysis Build a logistic regression model to detect spam messages Construct clusters of pictures using the K-means algorithm and identify popular personalities and destinations Develop recommendation systems using Collaborative Filtering and the Apriori algorithm In Detail With an increase in the number of users on the web, the content generated has increased substantially, bringing in the need to gain insights into the untapped gold mine that is social media data. For computational statistics, R has an advantage over other languages in providing readily-available data extraction and transformation packages, making it easier to carry out your ETL tasks. Along with this, its data visualization packages help users get a better understanding of the underlying data distributions while its range of "standard" statistical packages simplify analysis of the data. This book will teach you how powerful business cases are solved by applying machine learning techniques on social media data. You will learn about important and recent developments in the field of social media, along with a few advanced topics such as Open Authorization (OAuth). Through practical examples, you will access data from R using APIs of various social media sites such as Twitter, Facebook, Instagram, GitHub, Foursquare, LinkedIn, Blogger, and other networks. We will provide you with detailed explanations on the implementation of various use cases using R programming. With this handy guide, you will be ready to embark on your journey as an independent social media analyst. Style and approach This easy-to-follow guide is packed with hands-on, step-by-step examples that will enable you to convert your real-world social media data into useful, practical information.



Mastering Text Mining With R


Mastering Text Mining With R
DOWNLOAD
Author : Ashish Kumar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-12-28

Mastering Text Mining With R written by Ashish Kumar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-28 with Computers categories.


Master text-taming techniques and build effective text-processing applications with R About This Book Develop all the relevant skills for building text-mining apps with R with this easy-to-follow guide Gain in-depth understanding of the text mining process with lucid implementation in the R language Example-rich guide that lets you gain high-quality information from text data Who This Book Is For If you are an R programmer, analyst, or data scientist who wants to gain experience in performing text data mining and analytics with R, then this book is for you. Exposure to working with statistical methods and language processing would be helpful. What You Will Learn Get acquainted with some of the highly efficient R packages such as OpenNLP and RWeka to perform various steps in the text mining process Access and manipulate data from different sources such as JSON and HTTP Process text using regular expressions Get to know the different approaches of tagging texts, such as POS tagging, to get started with text analysis Explore different dimensionality reduction techniques, such as Principal Component Analysis (PCA), and understand its implementation in R Discover the underlying themes or topics that are present in an unstructured collection of documents, using common topic models such as Latent Dirichlet Allocation (LDA) Build a baseline sentence completing application Perform entity extraction and named entity recognition using R In Detail Text Mining (or text data mining or text analytics) is the process of extracting useful and high-quality information from text by devising patterns and trends. R provides an extensive ecosystem to mine text through its many frameworks and packages. Starting with basic information about the statistics concepts used in text mining, this book will teach you how to access, cleanse, and process text using the R language and will equip you with the tools and the associated knowledge about different tagging, chunking, and entailment approaches and their usage in natural language processing. Moving on, this book will teach you different dimensionality reduction techniques and their implementation in R. Next, we will cover pattern recognition in text data utilizing classification mechanisms, perform entity recognition, and develop an ontology learning framework. By the end of the book, you will develop a practical application from the concepts learned, and will understand how text mining can be leveraged to analyze the massively available data on social media. Style and approach This book takes a hands-on, example-driven approach to the text mining process with lucid implementation in R.