[PDF] Mastering Generative Adversarial Networks From Basics To Advanced Applications - eBooks Review

Mastering Generative Adversarial Networks From Basics To Advanced Applications


Mastering Generative Adversarial Networks From Basics To Advanced Applications
DOWNLOAD

Download Mastering Generative Adversarial Networks From Basics To Advanced Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Generative Adversarial Networks From Basics To Advanced Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Mastering Generative Adversarial Networks From Basics To Advanced Applications


Mastering Generative Adversarial Networks From Basics To Advanced Applications
DOWNLOAD
Author : Nagaram Ramesh
language : en
Publisher: SGSH Publications
Release Date : 2024-08-11

Mastering Generative Adversarial Networks From Basics To Advanced Applications written by Nagaram Ramesh and has been published by SGSH Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-11 with Antiques & Collectibles categories.


"Mastering Generative Adversarial Networks From Basics to Advanced Applications offers a thorough examination of Generative Adversarial Networks (GANs), covering their theoretical foundations, architectural innovations, and practical applications. This book delves into the original GAN model, its evolution, and the mathematical frameworks that support it, while also exploring cutting-edge variants and real-world use cases. Authored by Nagaram Ramesh and V. Bhargavi, it provides a crucial resource for academics, researchers, and practitioners aiming to deepen their understanding and effectively implement GAN technologies.



Generative Adversarial Networks For Image To Image Translation


Generative Adversarial Networks For Image To Image Translation
DOWNLOAD
Author : Arun Solanki
language : en
Publisher: Academic Press
Release Date : 2021-06-22

Generative Adversarial Networks For Image To Image Translation written by Arun Solanki and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-22 with Science categories.


Generative Adversarial Networks (GAN) have started a revolution in Deep Learning, and today GAN is one of the most researched topics in Artificial Intelligence. Generative Adversarial Networks for Image-to-Image Translation provides a comprehensive overview of the GAN (Generative Adversarial Network) concept starting from the original GAN network to various GAN-based systems such as Deep Convolutional GANs (DCGANs), Conditional GANs (cGANs), StackGAN, Wasserstein GANs (WGAN), cyclical GANs, and many more. The book also provides readers with detailed real-world applications and common projects built using the GAN system with respective Python code. A typical GAN system consists of two neural networks, i.e., generator and discriminator. Both of these networks contest with each other, similar to game theory. The generator is responsible for generating quality images that should resemble ground truth, and the discriminator is accountable for identifying whether the generated image is a real image or a fake image generated by the generator. Being one of the unsupervised learning-based architectures, GAN is a preferred method in cases where labeled data is not available. GAN can generate high-quality images, images of human faces developed from several sketches, convert images from one domain to another, enhance images, combine an image with the style of another image, change the appearance of a human face image to show the effects in the progression of aging, generate images from text, and many more applications. GAN is helpful in generating output very close to the output generated by humans in a fraction of second, and it can efficiently produce high-quality music, speech, and images. - Introduces the concept of Generative Adversarial Networks (GAN), including the basics of Generative Modelling, Deep Learning, Autoencoders, and advanced topics in GAN - Demonstrates GANs for a wide variety of applications, including image generation, Big Data and data analytics, cloud computing, digital transformation, E-Commerce, and Artistic Neural Networks - Includes a wide variety of biomedical and scientific applications, including unsupervised learning, natural language processing, pattern recognition, image and video processing, and disease diagnosis - Provides a robust set of methods that will help readers to appropriately and judiciously use the suitable GANs for their applications



Mastering Data Science A Comprehensive Guide To Techniques And Applications


Mastering Data Science A Comprehensive Guide To Techniques And Applications
DOWNLOAD
Author : Adam Jones
language : en
Publisher: Walzone Press
Release Date : 2025-01-05

Mastering Data Science A Comprehensive Guide To Techniques And Applications written by Adam Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-05 with Computers categories.


Embark on your data science journey with "Mastering Data Science: A Comprehensive Guide to Techniques and Applications," the ultimate resource for mastering the vast landscape of data science. Whether you're a novice eager to explore the field or an expert looking to refine and expand your skills, this book provides a thorough exploration of essential data science techniques and applications. Discover the foundational principles of data wrangling, preprocessing, statistical fundamentals, and essential mathematical techniques. Delve into the complexities of machine learning, deep learning, and natural language processing with clear explanations that connect theory to real-world practice. Each chapter is carefully designed to unravel complex concepts and features practical examples to enhance your understanding. Explore the intricacies of time series analysis, develop proficiency in crafting compelling data visualizations, and learn to effectively deploy machine learning models. With a focus on practical application, this guide not only imparts theoretical insights but also empowers you to address data science challenges confidently. Unlock the potential of data science to innovate, solve critical problems, and make informed decisions in today's data-centric world with "Mastering Data Science: A Comprehensive Guide to Techniques and Applications."



200 Tips For Mastering Generative Ai


200 Tips For Mastering Generative Ai
DOWNLOAD
Author : Rick Spair
language : en
Publisher: Rick Spair
Release Date :

200 Tips For Mastering Generative Ai written by Rick Spair and has been published by Rick Spair this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


In the rapidly evolving landscape of artificial intelligence, Generative AI stands out as a transformative force with the potential to revolutionize industries and reshape our understanding of creativity and automation. From its inception, Generative AI has captured the imagination of researchers, developers, and entrepreneurs, offering unprecedented capabilities in generating new data, simulating complex systems, and solving intricate problems that were once considered beyond the reach of machines. This book, "200 Tips for Mastering Generative AI," is a comprehensive guide designed to empower you with the knowledge and practical insights needed to harness the full potential of Generative AI. Whether you are a seasoned AI practitioner, a curious researcher, a forward-thinking entrepreneur, or a passionate enthusiast, this book provides valuable tips and strategies to navigate the vast and intricate world of Generative AI. We invite you to explore, experiment, and innovate with the knowledge you gain from this book. Together, we can unlock the full potential of Generative AI and shape a future where intelligent machines and human creativity coexist and collaborate in unprecedented ways. Welcome to "200 Tips for Mastering Generative AI." Your journey into the fascinating world of Generative AI begins here.



Machine Learning Mastery Algorithms And Applications


Machine Learning Mastery Algorithms And Applications
DOWNLOAD
Author : Michael Roberts
language : en
Publisher: Richards Education
Release Date :

Machine Learning Mastery Algorithms And Applications written by Michael Roberts and has been published by Richards Education this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


Unlock the power of machine learning with Machine Learning Mastery: Algorithms and Applications. This comprehensive guide covers everything from fundamental concepts to advanced techniques, providing a deep dive into the algorithms that power modern AI and their practical applications across various industries. Whether you're a beginner looking to get started or an experienced practitioner seeking to deepen your knowledge, this book offers a structured and detailed exploration of data preprocessing, supervised and unsupervised learning, reinforcement learning, and deep learning. Learn how to evaluate and optimize models, deploy machine learning solutions, and navigate the ethical and practical challenges of implementing AI in the real world. With case studies and hands-on examples, Machine Learning Mastery is your essential companion on the journey to becoming a proficient machine learning expert.



Deep Learning


Deep Learning
DOWNLOAD
Author : Dengsheng Zhang
language : en
Publisher: ZDS Online Publishing
Release Date :

Deep Learning written by Dengsheng Zhang and has been published by ZDS Online Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


This book aims to help readers have a systematic understanding of deep learning technology through practical systems and develop their own strategies on network design. To achieve this goal, the book adopts a diagnostic and prescriptive approach. The book starts with breaking down a canonical deep learning network into blocks and layers to understand the complexity and behavior of the network, bottlenecks and issues are identified as a result. A series of advanced network engineering methods are presented targeting specific issues in deep learning design. Those methods include recurrent convolutional neural network, residual convolutional neural networks, 1x1 transformation, autoencoder, U-nets, graph convolution network, region-based convolutional neural networks, YOLO object detection network, backpropagation and generative adversarial networks.



Gans In Action


Gans In Action
DOWNLOAD
Author : Vladimir Bok
language : en
Publisher: Simon and Schuster
Release Date : 2019-09-09

Gans In Action written by Vladimir Bok and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-09 with Computers categories.


Deep learning systems have gotten really great at identifying patterns in text, images, and video. But applications that create realistic images, natural sentences and paragraphs, or native-quality translations have proven elusive. Generative Adversarial Networks, or GANs, offer a promising solution to these challenges by pairing two competing neural networks' one that generates content and the other that rejects samples that are of poor quality. GANs in Action: Deep learning with Generative Adversarial Networks teaches you how to build and train your own generative adversarial networks. First, you'll get an introduction to generative modelling and how GANs work, along with an overview of their potential uses. Then, you'll start building your own simple adversarial system, as you explore the foundation of GAN architecture: the generator and discriminator networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.



Generative Adversarial Networks With Python


Generative Adversarial Networks With Python
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2019-07-11

Generative Adversarial Networks With Python written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-11 with Computers categories.


Step-by-step tutorials on generative adversarial networks in python for image synthesis and image translation.



Mastering Pytorch


Mastering Pytorch
DOWNLOAD
Author : Ashish Ranjan Jha
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-02-12

Mastering Pytorch written by Ashish Ranjan Jha and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-12 with Computers categories.


Master advanced techniques and algorithms for deep learning with PyTorch using real-world examples Key Features Understand how to use PyTorch 1.x to build advanced neural network models Learn to perform a wide range of tasks by implementing deep learning algorithms and techniques Gain expertise in domains such as computer vision, NLP, Deep RL, Explainable AI, and much more Book DescriptionDeep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models. The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai. By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.What you will learn Implement text and music generating models using PyTorch Build a deep Q-network (DQN) model in PyTorch Export universal PyTorch models using Open Neural Network Exchange (ONNX) Become well-versed with rapid prototyping using PyTorch with fast.ai Perform neural architecture search effectively using AutoML Easily interpret machine learning (ML) models written in PyTorch using Captum Design ResNets, LSTMs, Transformers, and more using PyTorch Find out how to use PyTorch for distributed training using the torch.distributed API Who this book is for This book is for data scientists, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning paradigms using PyTorch 1.x. Working knowledge of deep learning with Python programming is required.



Deep Learning And Ai Superhero


Deep Learning And Ai Superhero
DOWNLOAD
Author : Cuantum Technologies LLC
language : en
Publisher: Packt Publishing Ltd
Release Date : 2025-01-20

Deep Learning And Ai Superhero written by Cuantum Technologies LLC and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-20 with Computers categories.


Master TensorFlow, Keras, and PyTorch for deep learning in AI applications. Learn neural networks, CNNs, RNNs, LSTMs, and GANs through hands-on exercises and real-world projects. Key Features TensorFlow, Keras, and PyTorch for diverse deep learning frameworks Neural network concepts with real-world industry relevance Cloud and edge AI deployment techniques for scalable solutions Book DescriptionDive into the world of deep learning with this comprehensive guide that bridges theory and practice. From foundational neural networks to advanced architectures like CNNs, RNNs, and Transformers, this book equips you with the tools to build, train, and optimize AI models using TensorFlow, Keras, and PyTorch. Clear explanations of key concepts such as gradient descent, loss functions, and backpropagation are combined with hands-on exercises to ensure practical understanding. Explore cutting-edge AI frameworks, including generative adversarial networks (GANs) and autoencoders, while mastering real-world applications like image classification, text generation, and natural language processing. Detailed chapters cover transfer learning, fine-tuning pretrained models, and deployment strategies for cloud and edge computing. Practical exercises and projects further solidify your skills as you implement AI solutions for diverse challenges. Whether you're deploying AI models on cloud platforms like AWS or optimizing them for edge devices with TensorFlow Lite, this book provides step-by-step guidance. Designed for developers, AI enthusiasts, and data scientists, it balances theoretical depth with actionable insights, making it the ultimate resource for mastering modern deep learning frameworks and advancing your career in AIWhat you will learn Understand neural network basics Build models using TensorFlow and Keras Train and optimize PyTorch models Apply CNNs for image recognition Use RNNs and LSTMs for sequence tasks Leverage Transformers in NLP Who this book is for This book is for software developers, AI enthusiasts, data scientists, and ML engineers who aim to master deep learning frameworks. A foundational understanding of programming and basic ML concepts is recommended. Ideal for those seeking hands-on experience in real-world AI projects.