[PDF] Mastering Numerical Computing With Numpy - eBooks Review

Mastering Numerical Computing With Numpy


Mastering Numerical Computing With Numpy
DOWNLOAD

Download Mastering Numerical Computing With Numpy PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Numerical Computing With Numpy book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Mastering Numerical Computing With Numpy


Mastering Numerical Computing With Numpy
DOWNLOAD
Author : Umit Mert Cakmak
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-06-28

Mastering Numerical Computing With Numpy written by Umit Mert Cakmak and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-28 with Computers categories.


Enhance the power of NumPy and start boosting your scientific computing capabilities Key Features Grasp all aspects of numerical computing and understand NumPy Explore examples to learn exploratory data analysis (EDA), regression, and clustering Access NumPy libraries and use performance benchmarking to select the right tool Book Description NumPy is one of the most important scientific computing libraries available for Python. Mastering Numerical Computing with NumPy teaches you how to achieve expert level competency to perform complex operations, with in-depth coverage of advanced concepts. Beginning with NumPy's arrays and functions, you will familiarize yourself with linear algebra concepts to perform vector and matrix math operations. You will thoroughly understand and practice data processing, exploratory data analysis (EDA), and predictive modeling. You will then move on to working on practical examples which will teach you how to use NumPy statistics in order to explore US housing data and develop a predictive model using simple and multiple linear regression techniques. Once you have got to grips with the basics, you will explore unsupervised learning and clustering algorithms, followed by understanding how to write better NumPy code while keeping advanced considerations in mind. The book also demonstrates the use of different high-performance numerical computing libraries and their relationship with NumPy. You will study how to benchmark the performance of different configurations and choose the best for your system. By the end of this book, you will have become an expert in handling and performing complex data manipulations. What you will learn Perform vector and matrix operations using NumPy Perform exploratory data analysis (EDA) on US housing data Develop a predictive model using simple and multiple linear regression Understand unsupervised learning and clustering algorithms with practical use cases Write better NumPy code and implement the algorithms from scratch Perform benchmark tests to choose the best configuration for your system Who this book is for Mastering Numerical Computing with NumPy is for you if you are a Python programmer, data analyst, data engineer, or a data science enthusiast, who wants to master the intricacies of NumPy and build solutions for your numeric and scientific computational problems. You are expected to have familiarity with mathematics to get the most out of this book.



Mastering Python Scientific Computing


Mastering Python Scientific Computing
DOWNLOAD
Author : Hemant Kumar Mehta
language : en
Publisher:
Release Date : 2015-09-23

Mastering Python Scientific Computing written by Hemant Kumar Mehta and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-23 with Computers categories.


A complete guide for Python programmers to master scientific computing using Python APIs and toolsAbout This Book• The basics of scientific computing to advanced concepts involving parallel and large scale computation are all covered.• Most of the Python APIs and tools used in scientific computing are discussed in detail• The concepts are discussed with suitable example programsWho This Book Is ForIf you are a Python programmer and want to get your hands on scientific computing, this book is for you. The book expects you to have had exposure to various concepts of Python programming.What You Will Learn• Fundamentals and components of scientific computing• Scientific computing data management• Performing numerical computing using NumPy and SciPy• Concepts and programming for symbolic computing using SymPy• Using the plotting library matplotlib for data visualization• Data analysis and visualization using Pandas, matplotlib, and IPython• Performing parallel and high performance computing• Real-life case studies and best practices of scientific computingIn DetailIn today's world, along with theoretical and experimental work, scientific computing has become an important part of scientific disciplines. Numerical calculations, simulations and computer modeling in this day and age form the vast majority of both experimental and theoretical papers. In the scientific method, replication and reproducibility are two important contributing factors. A complete and concrete scientific result should be reproducible and replicable. Python is suitable for scientific computing. A large community of users, plenty of help and documentation, a large collection of scientific libraries and environments, great performance, and good support makes Python a great choice for scientific computing.At present Python is among the top choices for developing scientific workflow and the book targets existing Python developers to master this domain using Python. The main things to learn in the book are the concept of scientific workflow, managing scientific workflow data and performing computation on this data using Python.The book discusses NumPy, SciPy, SymPy, matplotlib, Pandas and IPython with several example programs.Style and approachThis book follows a hands-on approach to explain the complex concepts related to scientific computing. It details various APIs using appropriate examples.



A Primer On Scientific Programming With Python


A Primer On Scientific Programming With Python
DOWNLOAD
Author : Hans Petter Langtangen
language : en
Publisher: Springer
Release Date : 2014-08-01

A Primer On Scientific Programming With Python written by Hans Petter Langtangen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-01 with Computers categories.


The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012



Learning Numpy Array


Learning Numpy Array
DOWNLOAD
Author : Ivan Idris
language : en
Publisher: Packt Publishing Ltd
Release Date : 2014-06-13

Learning Numpy Array written by Ivan Idris and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-13 with Computers categories.


A step-by-step guide, packed with examples of practical numerical analysis that will give you a comprehensive, but concise overview of NumPy. This book is for programmers, scientists, or engineers, who have basic Python knowledge and would like to be able to do numerical computations with Python.



Numerical Python


Numerical Python
DOWNLOAD
Author : Robert Johansson
language : en
Publisher: Springer Nature
Release Date : 2024-09-27

Numerical Python written by Robert Johansson and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-27 with Computers categories.


Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more. Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis. After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning. What You'll Learn Work with vectors and matrices using NumPy Review Symbolic computing with SymPy Plot and visualize data with Matplotlib Perform data analysis tasks with Pandas and SciPy Understand statistical modeling and machine learning with statsmodels and scikit-learn Optimize Python code using Numba and Cython Who This Book Is For Developers who want to understand how to use Python and its ecosystem of libraries for scientific computing and data analysis.



Elegant Scipy


Elegant Scipy
DOWNLOAD
Author : Juan Nunez-Iglesias
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-08-11

Elegant Scipy written by Juan Nunez-Iglesias and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-11 with Computers categories.


Welcome to Scientific Python and its community. If you’re a scientist who programs with Python, this practical guide not only teaches you the fundamental parts of SciPy and libraries related to it, but also gives you a taste for beautiful, easy-to-read code that you can use in practice. You’ll learn how to write elegant code that’s clear, concise, and efficient at executing the task at hand. Throughout the book, you’ll work with examples from the wider scientific Python ecosystem, using code that illustrates principles outlined in the book. Using actual scientific data, you’ll work on real-world problems with SciPy, NumPy, Pandas, scikit-image, and other Python libraries. Explore the NumPy array, the data structure that underlies numerical scientific computation Use quantile normalization to ensure that measurements fit a specific distribution Represent separate regions in an image with a Region Adjacency Graph Convert temporal or spatial data into frequency domain data with the Fast Fourier Transform Solve sparse matrix problems, including image segmentations, with SciPy’s sparse module Perform linear algebra by using SciPy packages Explore image alignment (registration) with SciPy’s optimize module Process large datasets with Python data streaming primitives and the Toolz library



Python Data Science Handbook


Python Data Science Handbook
DOWNLOAD
Author : Jake VanderPlas
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-11-21

Python Data Science Handbook written by Jake VanderPlas and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-21 with Computers categories.


For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms



Numpy Cookbook


Numpy Cookbook
DOWNLOAD
Author : Ivan Idris
language : en
Publisher: Packt Publishing Ltd
Release Date : 2012-10-25

Numpy Cookbook written by Ivan Idris and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-25 with Computers categories.


Written in Cookbook style, the code examples will take your Numpy skills to the next level. This book will take Python developers with basic Numpy skills to the next level through some practical recipes.



Practical Numerical Computing Using Python


Practical Numerical Computing Using Python
DOWNLOAD
Author : Mahendra Verma
language : en
Publisher: Independently Published
Release Date : 2021-11-14

Practical Numerical Computing Using Python written by Mahendra Verma and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-14 with categories.


Review: "This excellent book of Prof. Verma is a single resource which a student can use to learn the fast-developing field of computational science. In addition to the description of Python language, it provides a broad overview of hardware, software, classic numerical methods, and everything in between. I recommend it strongly to all!" -- Prof. Prateek Sharma, IISc Bengaluru Key Features of the Book: Perfect book for introduction to practical numerical algorithms and programs for advanced undergraduate and beginning graduate students. Introduces Python programming language and its modules related to numerical computing Covers Numpy, Matplotlib, and Scipy modules in details. Illustrates how to make a variety of plots and animations. Detailed discussions on important numerical algorithms: Interpolation, Integration, Differentiation, ODE and PDE solvers, and Linear algebra solvers. Practical implementation of the algorithms in Python. Introduces Spectral and Finite-difference methods and applications to fluid mechanics and quantum mechanics. Includes chapters on Monte Carlo methods and applications to statistical physics, as well as on error analysis. A brief introduction to Computer hardware, complexity estimates, and nondimensionalization.



Mastering Python Scientific Computing


Mastering Python Scientific Computing
DOWNLOAD
Author : Hemant Kumar Mehta
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-09-23

Mastering Python Scientific Computing written by Hemant Kumar Mehta and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-23 with Computers categories.


A complete guide for Python programmers to master scientific computing using Python APIs and tools About This Book The basics of scientific computing to advanced concepts involving parallel and large scale computation are all covered. Most of the Python APIs and tools used in scientific computing are discussed in detail The concepts are discussed with suitable example programs Who This Book Is For If you are a Python programmer and want to get your hands on scientific computing, this book is for you. The book expects you to have had exposure to various concepts of Python programming. What You Will Learn Fundamentals and components of scientific computing Scientific computing data management Performing numerical computing using NumPy and SciPy Concepts and programming for symbolic computing using SymPy Using the plotting library matplotlib for data visualization Data analysis and visualization using Pandas, matplotlib, and IPython Performing parallel and high performance computing Real-life case studies and best practices of scientific computing In Detail In today's world, along with theoretical and experimental work, scientific computing has become an important part of scientific disciplines. Numerical calculations, simulations and computer modeling in this day and age form the vast majority of both experimental and theoretical papers. In the scientific method, replication and reproducibility are two important contributing factors. A complete and concrete scientific result should be reproducible and replicable. Python is suitable for scientific computing. A large community of users, plenty of help and documentation, a large collection of scientific libraries and environments, great performance, and good support makes Python a great choice for scientific computing. At present Python is among the top choices for developing scientific workflow and the book targets existing Python developers to master this domain using Python. The main things to learn in the book are the concept of scientific workflow, managing scientific workflow data and performing computation on this data using Python. The book discusses NumPy, SciPy, SymPy, matplotlib, Pandas and IPython with several example programs. Style and approach This book follows a hands-on approach to explain the complex concepts related to scientific computing. It details various APIs using appropriate examples.