[PDF] Elegant Scipy - eBooks Review

Elegant Scipy


Elegant Scipy
DOWNLOAD

Download Elegant Scipy PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Elegant Scipy book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Elegant Scipy


Elegant Scipy
DOWNLOAD
Author : Juan Nunez-Iglesias
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-08-11

Elegant Scipy written by Juan Nunez-Iglesias and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-11 with Computers categories.


Welcome to Scientific Python and its community. If you’re a scientist who programs with Python, this practical guide not only teaches you the fundamental parts of SciPy and libraries related to it, but also gives you a taste for beautiful, easy-to-read code that you can use in practice. You’ll learn how to write elegant code that’s clear, concise, and efficient at executing the task at hand. Throughout the book, you’ll work with examples from the wider scientific Python ecosystem, using code that illustrates principles outlined in the book. Using actual scientific data, you’ll work on real-world problems with SciPy, NumPy, Pandas, scikit-image, and other Python libraries. Explore the NumPy array, the data structure that underlies numerical scientific computation Use quantile normalization to ensure that measurements fit a specific distribution Represent separate regions in an image with a Region Adjacency Graph Convert temporal or spatial data into frequency domain data with the Fast Fourier Transform Solve sparse matrix problems, including image segmentations, with SciPy’s sparse module Perform linear algebra by using SciPy packages Explore image alignment (registration) with SciPy’s optimize module Process large datasets with Python data streaming primitives and the Toolz library



Optimization For Machine Learning


Optimization For Machine Learning
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2021-09-22

Optimization For Machine Learning written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-22 with Computers categories.


Optimization happens everywhere. Machine learning is one example of such and gradient descent is probably the most famous algorithm for performing optimization. Optimization means to find the best value of some function or model. That can be the maximum or the minimum according to some metric. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will learn how to find the optimum point to numerical functions confidently using modern optimization algorithms.



Basics Of Linear Algebra For Machine Learning


Basics Of Linear Algebra For Machine Learning
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2018-01-24

Basics Of Linear Algebra For Machine Learning written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-24 with Computers categories.


Linear algebra is a pillar of machine learning. You cannot develop a deep understanding and application of machine learning without it. In this laser-focused Ebook, you will finally cut through the equations, Greek letters, and confusion, and discover the topics in linear algebra that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover what linear algebra is, the importance of linear algebra to machine learning, vector, and matrix operations, matrix factorization, principal component analysis, and much more.



Python For Finance


Python For Finance
DOWNLOAD
Author : Dmytro Zherlitsyn
language : en
Publisher: BPB Publications
Release Date : 2024-07-30

Python For Finance written by Dmytro Zherlitsyn and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-30 with Computers categories.


DESCRIPTION Python's intuitive syntax and beginner-friendly nature makes it an ideal programming language for financial professionals. It acts as a bridge between the world of finance and data analysis. This book will introduce essential concepts in financial analysis methods and models, covering time-series analysis, graphical analysis, technical and fundamental analysis, asset pricing and portfolio theory, investment and trade strategies, risk assessment and prediction, and financial ML practices. The Python programming language and its ecosystem libraries, such as Pandas, NumPy, SciPy, Statsmodels, Matplotlib, Seaborn, Scikit-learn, Prophet, and other data science tools will demonstrate these rooted financial concepts in practice examples. This book will help you understand the concepts of financial market dynamics, estimate the metrics of financial asset profitability, predict trends, evaluate strategies, optimize portfolios, and manage financial risks. You will also learn data analysis techniques using Python programming language to understand the basics of data preparation, visualization, and manipulation in the world of financial data. KEY FEATURES ● Comprehensive guide to Python for financial data analysis and modeling. ● Practical examples and real-world applications for immediate implementation. ● Covers advanced topics like regression, Machine Learning and time series forecasting. WHAT YOU WILL LEARN ● Learn financial data analysis using Python data science libraries and techniques. ● Learn Python visualization tools to justify investment and trading strategies. ● Learn asset pricing and portfolio management methods with Python. ● Learn advanced regression and time series models for financial forecasting. ● Learn risk assessment and volatility modeling methods with Python. WHO THIS BOOK IS FOR This book is designed for financial analysts and other professionals interested in the financial industry with a basic understanding of Python programming and statistical analysis. It is also suitable for students in finance and data science who wish to apply Python tools to financial data analysis and decision-making. TABLE OF CONTENTS 1. Getting Started with Python for Finance 2. Python Tools for Data Analysis: Primer to Pandas and NumPy 3. Financial Data Manipulation with Python 4. Exploratory Data Analysis for Finance 5. Investment and Trading Strategies 6. Asset Pricing and Portfolio Management 7. Time Series Analysis and Financial Data Forecasting 8. Risk Assessment and Volatility Modelling 9. Machine Learning and Deep Learning in Finance 10. Time Series Analysis and Forecasting with FB Prophet Library Appendix A: Python Code Examples for Finance Appendix B: Glossary Appendix C: Valuable Resources



Data Science For Neuroimaging


Data Science For Neuroimaging
DOWNLOAD
Author : Ariel Rokem
language : en
Publisher: Princeton University Press
Release Date : 2023-12-12

Data Science For Neuroimaging written by Ariel Rokem and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-12 with Science categories.


Data science methods and tools—including programming, data management, visualization, and machine learning—and their application to neuroimaging research As neuroimaging turns toward data-intensive discovery, researchers in the field must learn to access, manage, and analyze datasets at unprecedented scales. Concerns about reproducibility and increased rigor in reporting of scientific results also demand higher standards of computational practice. This book offers neuroimaging researchers an introduction to data science, presenting methods, tools, and approaches that facilitate automated, reproducible, and scalable analysis and understanding of data. Through guided, hands-on explorations of openly available neuroimaging datasets, the book explains such elements of data science as programming, data management, visualization, and machine learning, and describes their application to neuroimaging. Readers will come away with broadly relevant data science skills that they can easily translate to their own questions. • Fills the need for an authoritative resource on data science for neuroimaging researchers • Strong emphasis on programming • Provides extensive code examples written in the Python programming language • Draws on openly available neuroimaging datasets for examples • Written entirely in the Jupyter notebook format, so the code examples can be executed, modified, and re-executed as part of the learning process



Financial Data Analysis Using Python


Financial Data Analysis Using Python
DOWNLOAD
Author : Dmytro Zherlitsyn
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2025-05-20

Financial Data Analysis Using Python written by Dmytro Zherlitsyn and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-20 with Computers categories.


This book will introduce essential concepts in financial analysis methods & models, covering time-series analysis, graphical analysis, technical and fundamental analysis, asset pricing and portfolio theory, investment and trade strategies, risk assessment and prediction, and financial ML practices. The Python programming language and its ecosystem libraries, such as Pandas, NumPy, SciPy, statsmodels, Matplotlib, Seaborn, Scikit-learn, Prophet, and other data science tools will demonstrate these rooted financial concepts in practice examples. This book will also help you understand the concepts of financial market dynamics, estimate the metrics of financial asset profitability, predict trends, evaluate strategies, optimize portfolios, and manage financial risks. You will also learn data analysis techniques using the Python programming language to understand the basics of data preparation, visualization, and manipulation in the world of financial data. FEATURES • Illustrates financial data analysis using Python data science libraries & techniques • Uses Python visualization tools to justify investment and trading strategies • Covers asset pricing & portfolio management methods with Python



Numerical Python


Numerical Python
DOWNLOAD
Author : Robert Johansson
language : en
Publisher: Springer Nature
Release Date : 2024-09-27

Numerical Python written by Robert Johansson and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-27 with Computers categories.


Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more. Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis. After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning. What You'll Learn Work with vectors and matrices using NumPy Review Symbolic computing with SymPy Plot and visualize data with Matplotlib Perform data analysis tasks with Pandas and SciPy Understand statistical modeling and machine learning with statsmodels and scikit-learn Optimize Python code using Numba and Cython Who This Book Is For Developers who want to understand how to use Python and its ecosystem of libraries for scientific computing and data analysis.



Scipy


 Scipy
DOWNLOAD
Author : Хуан Нуньес-Иглесиас
language : ru
Publisher: Litres
Release Date : 2022-01-29

Scipy written by Хуан Нуньес-Иглесиас and has been published by Litres this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-29 with Computers categories.


Книга познакомит вас с основополагающими компонентами библиотеки SciPy языка Python. Вы научитесь писать элегантный, ясный, краткий и эффективный программный код благодаря примерам из обширной научной экосистемы Python. Кроме SciPy, вы узнаете много нового про сопутствующие библиотеки, такие как NumPy, Pandas, scikit-image.Издание будет полезно всем программистам на Python, желающим использовать научные библиотеки в своей работе.



Python For Finance


Python For Finance
DOWNLOAD
Author : Yves Hilpisch
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2014-12-11

Python For Finance written by Yves Hilpisch and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-11 with Computers categories.


The financial industry has adopted Python at a tremendous rate recently, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. This hands-on guide helps both developers and quantitative analysts get started with Python, and guides you through the most important aspects of using Python for quantitative finance. Using practical examples through the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks, with topics that include: Fundamentals: Python data structures, NumPy array handling, time series analysis with pandas, visualization with matplotlib, high performance I/O operations with PyTables, date/time information handling, and selected best practices Financial topics: mathematical techniques with NumPy, SciPy and SymPy such as regression and optimization; stochastics for Monte Carlo simulation, Value-at-Risk, and Credit-Value-at-Risk calculations; statistics for normality tests, mean-variance portfolio optimization, principal component analysis (PCA), and Bayesian regression Special topics: performance Python for financial algorithms, such as vectorization and parallelization, integrating Python with Excel, and building financial applications based on Web technologies



Artificial Intelligence With Python


Artificial Intelligence With Python
DOWNLOAD
Author : Teik Toe Teoh
language : en
Publisher: Springer Nature
Release Date : 2022-03-16

Artificial Intelligence With Python written by Teik Toe Teoh and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-16 with Computers categories.


Entering the field of artificial intelligence and data science can seem daunting to beginners with little to no prior background, especially those with no programming experience. The concepts used in self-driving cars and virtual assistants like Amazon’s Alexa may seem very complex and difficult to grasp. The aim of Artificial Intelligence in Python is to make AI accessible and easy to understand for people with little to no programming experience though practical exercises. Newcomers will gain the necessary knowledge on how to create such systems, which are capable of executing tasks that require some form of human-like intelligence. This book introduces readers to various topics and examples of programming in Python, as well as key concepts in artificial intelligence. Python programming skills will be imparted as we go along. Concepts and code snippets will be covered in a step-by-step manner, to guide and instill confidence in beginners. Complex subjects in deep learning and machine learning will be broken down into easy-to-digest content and examples. Artificial intelligence implementations will also be shared, allowing beginners to generate their own artificial intelligence algorithms for reinforcement learning, style transfer, chatbots, speech, and natural language processing.