[PDF] Mathematical Methods For Knowledge Discovery And Data Mining - eBooks Review

Mathematical Methods For Knowledge Discovery And Data Mining


Mathematical Methods For Knowledge Discovery And Data Mining
DOWNLOAD

Download Mathematical Methods For Knowledge Discovery And Data Mining PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Methods For Knowledge Discovery And Data Mining book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Mathematical Methods For Knowledge Discovery And Data Mining


Mathematical Methods For Knowledge Discovery And Data Mining
DOWNLOAD
Author : Felici, Giovanni
language : en
Publisher: IGI Global
Release Date : 2007-10-31

Mathematical Methods For Knowledge Discovery And Data Mining written by Felici, Giovanni and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-31 with Computers categories.


"This book focuses on the mathematical models and methods that support most data mining applications and solution techniques, covering such topics as association rules; Bayesian methods; data visualization; kernel methods; neural networks; text, speech, and image recognition; an invaluable resource for scholars and practitioners in the fields of biomedicine, engineering, finance, manufacturing, marketing, performance measurement, and telecommunications"--Provided by publisher.



Feature Selection For Knowledge Discovery And Data Mining


Feature Selection For Knowledge Discovery And Data Mining
DOWNLOAD
Author : Huan Liu
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Feature Selection For Knowledge Discovery And Data Mining written by Huan Liu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.


As computer power grows and data collection technologies advance, a plethora of data is generated in almost every field where computers are used. The com puter generated data should be analyzed by computers; without the aid of computing technologies, it is certain that huge amounts of data collected will not ever be examined, let alone be used to our advantages. Even with today's advanced computer technologies (e. g. , machine learning and data mining sys tems), discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Taking its simplest form, raw data are represented in feature-values. The size of a dataset can be measUJ·ed in two dimensions, number of features (N) and number of instances (P). Both Nand P can be enormously large. This enormity may cause serious problems to many data mining systems. Feature selection is one of the long existing methods that deal with these problems. Its objective is to select a minimal subset of features according to some reasonable criteria so that the original task can be achieved equally well, if not better. By choosing a minimal subset offeatures, irrelevant and redundant features are removed according to the criterion. When N is reduced, the data space shrinks and in a sense, the data set is now a better representative of the whole data population. If necessary, the reduction of N can also give rise to the reduction of P by eliminating duplicates.



Urban Informatics


Urban Informatics
DOWNLOAD
Author : Wenzhong Shi
language : en
Publisher: Springer Nature
Release Date : 2021-04-06

Urban Informatics written by Wenzhong Shi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-06 with Social Science categories.


This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.



Data Mining Methods For Knowledge Discovery


Data Mining Methods For Knowledge Discovery
DOWNLOAD
Author : Krzysztof J. Cios
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Data Mining Methods For Knowledge Discovery written by Krzysztof J. Cios and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.


Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery. This book first elaborates on the fundamentals of each of the data mining methods: rough sets, Bayesian analysis, fuzzy sets, genetic algorithms, machine learning, neural networks, and preprocessing techniques. The book then goes on to thoroughly discuss these methods in the setting of the overall process of knowledge discovery. Numerous illustrative examples and experimental findings are also included. Each chapter comes with an extensive bibliography. Data Mining Methods for Knowledge Discovery is intended for senior undergraduate and graduate students, as well as a broad audience of professionals in computer and information sciences, medical informatics, and business information systems.



Data Mining


Data Mining
DOWNLOAD
Author : Krzysztof J. Cios
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-05

Data Mining written by Krzysztof J. Cios and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-05 with Computers categories.


“If you torture the data long enough, Nature will confess,” said 1991 Nobel-winning economist Ronald Coase. The statement is still true. However, achieving this lofty goal is not easy. First, “long enough” may, in practice, be “too long” in many applications and thus unacceptable. Second, to get “confession” from large data sets one needs to use state-of-the-art “torturing” tools. Third, Nature is very stubborn — not yielding easily or unwilling to reveal its secrets at all. Fortunately, while being aware of the above facts, the reader (a data miner) will find several efficient data mining tools described in this excellent book. The book discusses various issues connecting the whole spectrum of approaches, methods, techniques and algorithms falling under the umbrella of data mining. It starts with data understanding and preprocessing, then goes through a set of methods for supervised and unsupervised learning, and concludes with model assessment, data security and privacy issues. It is this specific approach of using the knowledge discovery process that makes this book a rare one indeed, and thus an indispensable addition to many other books on data mining. To be more precise, this is a book on knowledge discovery from data. As for the data sets, the easy-to-make statement is that there is no part of modern human activity left untouched by both the need and the desire to collect data. The consequence of such a state of affairs is obvious.



Mathematical Methods In Data Science


Mathematical Methods In Data Science
DOWNLOAD
Author : Jingli Ren
language : en
Publisher: Elsevier
Release Date : 2023-01-06

Mathematical Methods In Data Science written by Jingli Ren and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-06 with Computers categories.


Mathematical Methods in Data Science covers a broad range of mathematical tools used in data science, including calculus, linear algebra, optimization, network analysis, probability and differential equations. Based on the authors' recently published and previously unpublished results, this book introduces a new approach based on network analysis to integrate big data into the framework of ordinary and partial differential equations for dataanalysis and prediction. With data science being used in virtually every aspect of our society, the book includes examples and problems arising in data science and the clear explanation of advanced mathematical concepts, especially data-driven differential equations, making it accessible to researchers and graduate students in mathematics and data science. - Combines a broad spectrum of mathematics, including linear algebra, optimization, network analysis and ordinary and partial differential equations for data science - Written by two researchers who are actively applying mathematical and statistical methods as well as ODE and PDE for data analysis and prediction - Highly interdisciplinary, with content spanning mathematics, data science, social media analysis, network science, financial markets, and more - Presents a wide spectrum of topics in a logical order, including probability, linear algebra, calculus and optimization, networks, ordinary differential and partial differential equations



Knowledge Discovery And Data Mining


Knowledge Discovery And Data Mining
DOWNLOAD
Author : Honghua Tan
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-02-04

Knowledge Discovery And Data Mining written by Honghua Tan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-04 with Technology & Engineering categories.


The volume includes a set of selected papers extended and revised from the 4th International conference on Knowledge Discovery and Data Mining, March 1-2, 2011, Macau, Chin. This Volume is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of knowledge discovery and data mining and learning to disseminate their latest research results and exchange views on the future research directions of these fields. 108 high-quality papers are included in the volume.



Handbook Of Research On Novel Soft Computing Intelligent Algorithms Theory And Practical Applications


Handbook Of Research On Novel Soft Computing Intelligent Algorithms Theory And Practical Applications
DOWNLOAD
Author : Vasant, Pandian M.
language : en
Publisher: IGI Global
Release Date : 2013-08-31

Handbook Of Research On Novel Soft Computing Intelligent Algorithms Theory And Practical Applications written by Vasant, Pandian M. and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-31 with Computers categories.


"This book explores emerging technologies and best practices designed to effectively address concerns inherent in properly optimizing advanced systems, demonstrating applications in areas such as bio-engineering, space exploration, industrial informatics, information security, and nuclear and renewable energies"--Provided by publisher.



Scientific Data Mining And Knowledge Discovery


Scientific Data Mining And Knowledge Discovery
DOWNLOAD
Author : Mohamed Medhat Gaber
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-09-19

Scientific Data Mining And Knowledge Discovery written by Mohamed Medhat Gaber and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-19 with Computers categories.


Mohamed Medhat Gaber “It is not my aim to surprise or shock you – but the simplest way I can summarise is to say that there are now in the world machines that think, that learn and that create. Moreover, their ability to do these things is going to increase rapidly until – in a visible future – the range of problems they can handle will be coextensive with the range to which the human mind has been applied” by Herbert A. Simon (1916-2001) 1Overview This book suits both graduate students and researchers with a focus on discovering knowledge from scienti c data. The use of computational power for data analysis and knowledge discovery in scienti c disciplines has found its roots with the re- lution of high-performance computing systems. Computational science in physics, chemistry, and biology represents the rst step towards automation of data analysis tasks. The rational behind the developmentof computationalscience in different - eas was automating mathematical operations performed in those areas. There was no attention paid to the scienti c discovery process. Automated Scienti c Disc- ery (ASD) [1–3] represents the second natural step. ASD attempted to automate the process of theory discovery supported by studies in philosophy of science and cognitive sciences. Although early research articles have shown great successes, the area has not evolved due to many reasons. The most important reason was the lack of interaction between scientists and the automating systems.



Data Mining With R


Data Mining With R
DOWNLOAD
Author : Luís Torgo
language : en
Publisher: Chapman & Hall/CRC
Release Date : 2017

Data Mining With R written by Luís Torgo and has been published by Chapman & Hall/CRC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Business & Economics categories.


5.1 Problem Description and Objectives