Models For Discrete Data

DOWNLOAD
Download Models For Discrete Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Models For Discrete Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Models For Discrete Data
DOWNLOAD
Author : Daniel Zelterman
language : en
Publisher:
Release Date : 2006
Models For Discrete Data written by Daniel Zelterman and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Multivariate analysis categories.
Discrete data results from experiments in which individuals are classified into one of several discrete categories. This volume describes the statistical models for the analysis of such data along with relevant computer programmes written in SAS.
Discrete Data Analysis With R
DOWNLOAD
Author : Michael Friendly
language : en
Publisher: CRC Press
Release Date : 2015-12-16
Discrete Data Analysis With R written by Michael Friendly and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-16 with Mathematics categories.
An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth
Mixture Models
DOWNLOAD
Author : Weixin Yao
language : en
Publisher: CRC Press
Release Date : 2024-04-18
Mixture Models written by Weixin Yao and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-18 with Mathematics categories.
Mixture models are a powerful tool for analyzing complex and heterogeneous datasets across many scientific fields, from finance to genomics. Mixture Models: Parametric, Semiparametric, and New Directions provides an up-to-date introduction to these models, their recent developments, and their implementation using R. It fills a gap in the literature by covering not only the basics of finite mixture models, but also recent developments such as semiparametric extensions, robust modeling, label switching, and high-dimensional modeling. Features Comprehensive overview of the methods and applications of mixture models Key topics include hypothesis testing, model selection, estimation methods, and Bayesian approaches Recent developments, such as semiparametric extensions, robust modeling, label switching, and high-dimensional modeling Examples and case studies from such fields as astronomy, biology, genomics, economics, finance, medicine, engineering, and sociology Integrated R code for many of the models, with code and data available in the R Package MixSemiRob Mixture Models: Parametric, Semiparametric, and New Directions is a valuable resource for researchers and postgraduate students from statistics, biostatistics, and other fields. It could be used as a textbook for a course on model-based clustering methods, and as a supplementary text for courses on data mining, semiparametric modeling, and high-dimensional data analysis.
Modeling Discrete Time To Event Data
DOWNLOAD
Author : Gerhard Tutz
language : en
Publisher: Springer
Release Date : 2016-06-14
Modeling Discrete Time To Event Data written by Gerhard Tutz and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-14 with Mathematics categories.
This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are explained. Each section includes a set of exercises on the respective topics. Various functions and tools for the analysis of discrete survival data are collected in the R package discSurv that accompanies the book.
Models For Discreet Data
DOWNLOAD
Author : Daniel Zelterman
language : en
Publisher: Oxford University Press, USA
Release Date : 1999-01-21
Models For Discreet Data written by Daniel Zelterman and has been published by Oxford University Press, USA this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-01-21 with Mathematics categories.
Discrete or count data arise in experiments where the outcome variables are the numbers of individuals classified into unique, non-overlapping categories. This revised edition describes the statistical models used in the analysis and summary of such data, and provides a sound introduction to the subject for graduate students and practitioners needing a review of the methodology. With many numerical examples throughout, it includes topics not covered in depth elsewhere, such as thenegative multinomial distribution; the many forms of the hypergeometric distribution; and coordinate free models. A detailed treatment of sample size estimation and power are given in terms of both exact inference and asymptotic, non-central chi-squared methods. A new section covering Poissonregression has also been included. An important feature of this book, missing elsewhere, is the integration of the software into the text.Many more exercises are provided (including 84% more applied exercises) than in the previous edition, helping consolidate the reader's understanding of all subjects covered, and making the book highly suitable for use in a classroom setting. Several new datasets, mostly from the health and medical sector, are discussed, including previously unpublished data from a study of Tourette's Syndrome in children.
Statistical And Econometric Methods For Transportation Data Analysis
DOWNLOAD
Author : Simon Washington
language : en
Publisher: CRC Press
Release Date : 2020-01-30
Statistical And Econometric Methods For Transportation Data Analysis written by Simon Washington and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-30 with Technology & Engineering categories.
The book's website (with databases and other support materials) can be accessed here. Praise for the Second Edition: The second edition introduces an especially broad set of statistical methods ... As a lecturer in both transportation and marketing research, I find this book an excellent textbook for advanced undergraduate, Master’s and Ph.D. students, covering topics from simple descriptive statistics to complex Bayesian models. ... It is one of the few books that cover an extensive set of statistical methods needed for data analysis in transportation. The book offers a wealth of examples from the transportation field. —The American Statistician Statistical and Econometric Methods for Transportation Data Analysis, Third Edition offers an expansion over the first and second editions in response to the recent methodological advancements in the fields of econometrics and statistics and to provide an increasing range of examples and corresponding data sets. It describes and illustrates some of the statistical and econometric tools commonly used in transportation data analysis. It provides a wide breadth of examples and case studies, covering applications in various aspects of transportation planning, engineering, safety, and economics. Ample analytical rigor is provided in each chapter so that fundamental concepts and principles are clear and numerous references are provided for those seeking additional technical details and applications. New to the Third Edition Updated references and improved examples throughout. New sections on random parameters linear regression and ordered probability models including the hierarchical ordered probit model. A new section on random parameters models with heterogeneity in the means and variances of parameter estimates. Multiple new sections on correlated random parameters and correlated grouped random parameters in probit, logit and hazard-based models. A new section discussing the practical aspects of random parameters model estimation. A new chapter on Latent Class Models. A new chapter on Bivariate and Multivariate Dependent Variable Models. Statistical and Econometric Methods for Transportation Data Analysis, Third Edition can serve as a textbook for advanced undergraduate, Masters, and Ph.D. students in transportation-related disciplines including engineering, economics, urban and regional planning, and sociology. The book also serves as a technical reference for researchers and practitioners wishing to examine and understand a broad range of statistical and econometric tools required to study transportation problems.
Bayesian Hierarchical Models
DOWNLOAD
Author : Peter D. Congdon
language : en
Publisher: CRC Press
Release Date : 2019-09-16
Bayesian Hierarchical Models written by Peter D. Congdon and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-16 with Mathematics categories.
An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate different modelling topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book’s website
Statistical And Econometric Methods For Transportation Data Analysis
DOWNLOAD
Author : Simon P. Washington
language : en
Publisher: CRC Press
Release Date : 2010-12-02
Statistical And Econometric Methods For Transportation Data Analysis written by Simon P. Washington and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-12-02 with Technology & Engineering categories.
The complexity, diversity, and random nature of transportation problems necessitates a broad analytical toolbox. Describing tools commonly used in the field, Statistical and Econometric Methods for Transportation Data Analysis, Second Edition provides an understanding of a broad range of analytical tools required to solve transportation problems. It includes a wide breadth of examples and case studies covering applications in various aspects of transportation planning, engineering, safety, and economics. After a solid refresher on statistical fundamentals, the book focuses on continuous dependent variable models and count and discrete dependent variable models. Along with an entirely new section on other statistical methods, this edition offers a wealth of new material. New to the Second Edition A subsection on Tobit and censored regressions An explicit treatment of frequency domain time series analysis, including Fourier and wavelets analysis methods New chapter that presents logistic regression commonly used to model binary outcomes New chapter on ordered probability models New chapters on random-parameter models and Bayesian statistical modeling New examples and data sets Each chapter clearly presents fundamental concepts and principles and includes numerous references for those seeking additional technical details and applications. To reinforce a practical understanding of the modeling techniques, the data sets used in the text are offered on the book’s CRC Press web page. PowerPoint and Word presentations for each chapter are also available for download.
Statistical Models And Methods For Lifetime Data
DOWNLOAD
Author : Jerald F. Lawless
language : en
Publisher: John Wiley & Sons
Release Date : 2011-01-25
Statistical Models And Methods For Lifetime Data written by Jerald F. Lawless and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-01-25 with Mathematics categories.
Praise for the First Edition "An indispensable addition to any serious collection on lifetime data analysis and . . . a valuable contribution to the statistical literature. Highly recommended . . ." -Choice "This is an important book, which will appeal to statisticians working on survival analysis problems." -Biometrics "A thorough, unified treatment of statistical models and methods used in the analysis of lifetime data . . . this is a highly competent and agreeable statistical textbook." -Statistics in Medicine The statistical analysis of lifetime or response time data is a key tool in engineering, medicine, and many other scientific and technological areas. This book provides a unified treatment of the models and statistical methods used to analyze lifetime data. Equally useful as a reference for individuals interested in the analysis of lifetime data and as a text for advanced students, Statistical Models and Methods for Lifetime Data, Second Edition provides broad coverage of the area without concentrating on any single field of application. Extensive illustrations and examples drawn from engineering and the biomedical sciences provide readers with a clear understanding of key concepts. New and expanded coverage in this edition includes: * Observation schemes for lifetime data * Multiple failure modes * Counting process-martingale tools * Both special lifetime data and general optimization software * Mixture models * Treatment of interval-censored and truncated data * Multivariate lifetimes and event history models * Resampling and simulation methodology
Cluster Analysis For Data Mining And System Identification
DOWNLOAD
Author : János Abonyi
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-10
Cluster Analysis For Data Mining And System Identification written by János Abonyi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-10 with Mathematics categories.
The aim of this book is to illustrate that advanced fuzzy clustering algorithms can be used not only for partitioning of the data. It can also be used for visualization, regression, classification and time-series analysis, hence fuzzy cluster analysis is a good approach to solve complex data mining and system identification problems. This book is oriented to undergraduate and postgraduate and is well suited for teaching purposes.