Models For Multi State Survival Data

DOWNLOAD
Download Models For Multi State Survival Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Models For Multi State Survival Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Competing Risks And Multistate Models With R
DOWNLOAD
Author : Jan Beyersmann
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-11-18
Competing Risks And Multistate Models With R written by Jan Beyersmann and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-11-18 with Mathematics categories.
This book covers competing risks and multistate models, sometimes summarized as event history analysis. These models generalize the analysis of time to a single event (survival analysis) to analysing the timing of distinct terminal events (competing risks) and possible intermediate events (multistate models). Both R and multistate methods are promoted with a focus on nonparametric methods.
Models For Multi State Survival Data
DOWNLOAD
Author : Per Kragh Andersen
language : en
Publisher: CRC Press
Release Date : 2023-10-11
Models For Multi State Survival Data written by Per Kragh Andersen and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-11 with Mathematics categories.
Multi-state models provide a statistical framework for studying longitudinal data on subjects when focus is on the occurrence of events that the subjects may experience over time. They find application particularly in biostatistics, medicine, and public health. The book includes mathematical detail which can be skipped by readers more interested in the practical examples. It is aimed at biostatisticians and at readers with an interest in the topic having a more applied background, such as epidemiology. This book builds on several courses the authors have taught on the subject. Key Features: Intensity-based and marginal models. Survival data, competing risks, illness-death models, recurrent events. Includes a full chapter on pseudo-values. Intuitive introductions and mathematical details. Practical examples of event history data. Exercises. Software code in R and SAS and the data used in the book, as well as solutions to the exercises, can be found on the book’s webpage: https://multi-state-book.github.io/companion .
Introducing Survival And Event History Analysis
DOWNLOAD
Author : Melinda Mills
language : en
Publisher: SAGE
Release Date : 2011-01-19
Introducing Survival And Event History Analysis written by Melinda Mills and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-01-19 with Social Science categories.
This book is an accessible, practical and comprehensive guide for researchers from multiple disciplines including biomedical, epidemiology, engineering and the social sciences. Written for accessibility, this book will appeal to students and researchers who want to understand the basics of survival and event history analysis and apply these methods without getting entangled in mathematical and theoretical technicalities. Inside, readers are offered a blueprint for their entire research project from data preparation to model selection and diagnostics. Engaging, easy to read, functional and packed with enlightening examples, ‘hands-on’ exercises, conversations with key scholars and resources for both students and instructors, this text allows researchers to quickly master advanced statistical techniques. It is written from the perspective of the ‘user’, making it suitable as both a self-learning tool and graduate-level textbook. Also included are up-to-date innovations in the field, including advancements in the assessment of model fit, unobserved heterogeneity, recurrent events and multilevel event history models. Practical instructions are also included for using the statistical programs of R, STATA and SPSS, enabling readers to replicate the examples described in the text.
Multi State Survival Models For Interval Censored Data
DOWNLOAD
Author : Ardo van den Hout
language : en
Publisher: CRC Press
Release Date : 2016-11-25
Multi State Survival Models For Interval Censored Data written by Ardo van den Hout and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-25 with Mathematics categories.
Multi-State Survival Models for Interval-Censored Data introduces methods to describe stochastic processes that consist of transitions between states over time. It is targeted at researchers in medical statistics, epidemiology, demography, and social statistics. One of the applications in the book is a three-state process for dementia and survival in the older population. This process is described by an illness-death model with a dementia-free state, a dementia state, and a dead state. Statistical modelling of a multi-state process can investigate potential associations between the risk of moving to the next state and variables such as age, gender, or education. A model can also be used to predict the multi-state process. The methods are for longitudinal data subject to interval censoring. Depending on the definition of a state, it is possible that the time of the transition into a state is not observed exactly. However, when longitudinal data are available the transition time may be known to lie in the time interval defined by two successive observations. Such an interval-censored observation scheme can be taken into account in the statistical inference. Multi-state modelling is an elegant combination of statistical inference and the theory of stochastic processes. Multi-State Survival Models for Interval-Censored Data shows that the statistical modelling is versatile and allows for a wide range of applications.
Bayesian Survival Analysis
DOWNLOAD
Author : Joseph G. Ibrahim
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Bayesian Survival Analysis written by Joseph G. Ibrahim and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Medical categories.
Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. Several topics are addressed, including parametric models, semiparametric models based on prior processes, proportional and non-proportional hazards models, frailty models, cure rate models, model selection and comparison, joint models for longitudinal and survival data, models with time varying covariates, missing covariate data, design and monitoring of clinical trials, accelerated failure time models, models for mulitivariate survival data, and special types of hierarchial survival models. Also various censoring schemes are examined including right and interval censored data. Several additional topics are discussed, including noninformative and informative prior specificiations, computing posterior qualities of interest, Bayesian hypothesis testing, variable selection, model selection with nonnested models, model checking techniques using Bayesian diagnostic methods, and Markov chain Monte Carlo (MCMC) algorithms for sampling from the posteiror and predictive distributions. The book presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all essentially from the health sciences, including cancer, AIDS, and the environment. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. This book would be most suitable for second or third year graduate students in statistics or biostatistics. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.
Analysis Of Multivariate Survival Data
DOWNLOAD
Author : Philip Hougaard
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Analysis Of Multivariate Survival Data written by Philip Hougaard and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Survival data or more general time-to-event data occur in many areas, including medicine, biology, engineering, economics, and demography, but previously standard methods have requested that all time variables are univariate and independent. This book extends the field by allowing for multivariate times. Applications where such data appear are survival of twins, survival of married couples and families, time to failure of right and left kidney for diabetic patients, life history data with time to outbreak of disease, complications and death, recurrent episodes of diseases and cross-over studies with time responses. As the field is rather new, the concepts and the possible types of data are described in detail and basic aspects of how dependence can appear in such data is discussed. Four different approaches to the analysis of such data are presented. The multi-state models where a life history is described as the subject moving from state to state is the most classical approach. The Markov models make up an important special case, but it is also described how easily more general models are set up and analyzed. Frailty models, which are random effects models for survival data, made a second approach, extending from the most simple shared frailty models, which are considered in detail, to models with more complicated dependence structures over individuals or over time. Marginal modelling has become a popular approach to evaluate the effect of explanatory factors in the presence of dependence, but without having specified a statistical model for the dependence. Finally, the completely non-parametric approach to bivariate censored survival data is described. This book is aimed at investigators who need to analyze multivariate survival data, but due to its focus on the concepts and the modelling aspects, it is also useful for persons interested in such data, but
Multistate Models For The Analysis Of Life History Data
DOWNLOAD
Author : Richard J Cook
language : en
Publisher: CRC Press
Release Date : 2018-05-15
Multistate Models For The Analysis Of Life History Data written by Richard J Cook and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-15 with Mathematics categories.
Multistate Models for the Analysis of Life History Data provides the first comprehensive treatment of multistate modeling and analysis, including parametric, nonparametric and semiparametric methods applicable to many types of life history data. Special models such as illness-death, competing risks and progressive processes are considered, as well as more complex models. The book provides both theoretical development and illustrations of analysis based on data from randomized trials and observational cohort studies in health research. It features: Discusses a wide range of applications of multistate models, Presents methods for both continuously and intermittently observed life history processes, Gives a thorough discussion of conditionally independent censoring and observation processes, Discusses models with random effects and joint models for two or more multistate processes, Discusses and illustrates software for multistate analysis that is available in R, Target audience includes those engaged in research and applications involving multistate models.
Data Analysis With Competing Risks And Intermediate States
DOWNLOAD
Author : Ronald B. Geskus
language : en
Publisher: CRC Press
Release Date : 2015-07-14
Data Analysis With Competing Risks And Intermediate States written by Ronald B. Geskus and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-14 with Mathematics categories.
This practical and thorough book explains when and how to use models and techniques for the analysis of competing risks and intermediate states. It covers the most recent insights on estimation techniques and discusses in detail how to interpret the obtained results. Each chapter includes standard exercises; a software section on SAS, Stata, and R; and computer practicals that allow readers to practice with the techniques. The book's website provides the R code for the computer practicals along with other material.
Flowgraph Models For Multistate Time To Event Data
DOWNLOAD
Author : Aparna V. Huzurbazar
language : en
Publisher: John Wiley & Sons
Release Date : 2004-12-03
Flowgraph Models For Multistate Time To Event Data written by Aparna V. Huzurbazar and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-12-03 with Mathematics categories.
A unique introduction to the innovative methodology of statisticalflowgraphs This book offers a practical, application-based approach toflowgraph models for time-to-event data. It clearly shows how thisinnovative new methodology can be used to analyze data fromsemi-Markov processes without prior knowledge of stochasticprocesses--opening the door to interesting applications in survivalanalysis and reliability as well as stochastic processes. Unlike other books on multistate time-to-event data, this workemphasizes reliability and not just biostatistics, illustratingeach method with medical and engineering examples. It demonstrateshow flowgraphs bring together applied probability techniques andcombine them with data analysis and statistical methods to answerquestions of practical interest. Bayesian methods of data analysisare emphasized. Coverage includes: * Clear instructions on how to model multistate time-to-event datausing flowgraph models * An emphasis on computation, real data, and Bayesian methods forproblem solving * Real-world examples for analyzing data from stochasticprocesses * The use of flowgraph models to analyze complex stochasticnetworks * Exercise sets to reinforce the practical approach of thisvolume Flowgraph Models for Multistate Time-to-Event Data is an invaluableresource/reference for researchers in biostatistics/survivalanalysis, systems engineering, and in fields that use stochasticprocesses, including anthropology, biology, psychology, computerscience, and engineering.
Handbook Of Survival Analysis
DOWNLOAD
Author : John P. Klein
language : en
Publisher: CRC Press
Release Date : 2016-04-19
Handbook Of Survival Analysis written by John P. Klein and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Mathematics categories.
Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians