[PDF] Multi State Survival Models For Interval Censored Data - eBooks Review

Multi State Survival Models For Interval Censored Data


Multi State Survival Models For Interval Censored Data
DOWNLOAD

Download Multi State Survival Models For Interval Censored Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multi State Survival Models For Interval Censored Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Multi State Survival Models For Interval Censored Data


Multi State Survival Models For Interval Censored Data
DOWNLOAD
Author : Ardo van den Hout
language : en
Publisher: CRC Press
Release Date : 2016-11-25

Multi State Survival Models For Interval Censored Data written by Ardo van den Hout and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-25 with Mathematics categories.


Multi-State Survival Models for Interval-Censored Data introduces methods to describe stochastic processes that consist of transitions between states over time. It is targeted at researchers in medical statistics, epidemiology, demography, and social statistics. One of the applications in the book is a three-state process for dementia and survival in the older population. This process is described by an illness-death model with a dementia-free state, a dementia state, and a dead state. Statistical modelling of a multi-state process can investigate potential associations between the risk of moving to the next state and variables such as age, gender, or education. A model can also be used to predict the multi-state process. The methods are for longitudinal data subject to interval censoring. Depending on the definition of a state, it is possible that the time of the transition into a state is not observed exactly. However, when longitudinal data are available the transition time may be known to lie in the time interval defined by two successive observations. Such an interval-censored observation scheme can be taken into account in the statistical inference. Multi-state modelling is an elegant combination of statistical inference and the theory of stochastic processes. Multi-State Survival Models for Interval-Censored Data shows that the statistical modelling is versatile and allows for a wide range of applications.



Multi State Survival Models For Interval Censored Data


Multi State Survival Models For Interval Censored Data
DOWNLOAD
Author : Ardo van den Hout
language : en
Publisher: Chapman & Hall/CRC
Release Date : 2017

Multi State Survival Models For Interval Censored Data written by Ardo van den Hout and has been published by Chapman & Hall/CRC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Biometry categories.


Multi-State Survival Models for Interval-Censored Data introduces methods to describe stochastic processes that consist of transitions between states over time. It is targeted at researchers in medical statistics, epidemiology, demography, and social statistics. One of the applications in the book is a three-state process for dementia and survival in the older population. This process is described by an illness-death model with a dementia-free state, a dementia state, and a dead state. Statistical modelling of a multi-state process can investigate potential associations between the risk of moving to the next state and variables such as age, gender, or education. A model can also be used to predict the multi-state process. The methods are for longitudinal data subject to interval censoring. Depending on the definition of a state, it is possible that the time of the transition into a state is not observed exactly. However, when longitudinal data are available the transition time may be known to lie in the time interval defined by two successive observations. Such an interval-censored observation scheme can be taken into account in the statistical inference. Multi-state modelling is an elegant combination of statistical inference and the theory of stochastic processes. Multi-State Survival Models for Interval-Censored Data shows that the statistical modelling is versatile and allows for a wide range of applications.



Multi State Survival Models For Interval Censored Data


Multi State Survival Models For Interval Censored Data
DOWNLOAD
Author : Ardo van den Hout
language : en
Publisher: CRC Press
Release Date : 2016-11-25

Multi State Survival Models For Interval Censored Data written by Ardo van den Hout and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-25 with Mathematics categories.


Multi-State Survival Models for Interval-Censored Data introduces methods to describe stochastic processes that consist of transitions between states over time. It is targeted at researchers in medical statistics, epidemiology, demography, and social statistics. One of the applications in the book is a three-state process for dementia and survival in the older population. This process is described by an illness-death model with a dementia-free state, a dementia state, and a dead state. Statistical modelling of a multi-state process can investigate potential associations between the risk of moving to the next state and variables such as age, gender, or education. A model can also be used to predict the multi-state process. The methods are for longitudinal data subject to interval censoring. Depending on the definition of a state, it is possible that the time of the transition into a state is not observed exactly. However, when longitudinal data are available the transition time may be known to lie in the time interval defined by two successive observations. Such an interval-censored observation scheme can be taken into account in the statistical inference. Multi-state modelling is an elegant combination of statistical inference and the theory of stochastic processes. Multi-State Survival Models for Interval-Censored Data shows that the statistical modelling is versatile and allows for a wide range of applications.



Models For Multi State Survival Data


Models For Multi State Survival Data
DOWNLOAD
Author : Per Kragh Andersen
language : en
Publisher: CRC Press
Release Date : 2023-10-11

Models For Multi State Survival Data written by Per Kragh Andersen and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-11 with Mathematics categories.


Multi-state models provide a statistical framework for studying longitudinal data on subjects when focus is on the occurrence of events that the subjects may experience over time. They find application particularly in biostatistics, medicine, and public health. The book includes mathematical detail which can be skipped by readers more interested in the practical examples. It is aimed at biostatisticians and at readers with an interest in the topic having a more applied background, such as epidemiology. This book builds on several courses the authors have taught on the subject. Key Features: Intensity-based and marginal models. Survival data, competing risks, illness-death models, recurrent events. Includes a full chapter on pseudo-values. Intuitive introductions and mathematical details. Practical examples of event history data. Exercises. Software code in R and SAS and the data used in the book, as well as solutions to the exercises, can be found on the book’s webpage: https://multi-state-book.github.io/companion .



Survival Analysis With Interval Censored Data


Survival Analysis With Interval Censored Data
DOWNLOAD
Author : Kris Bogaerts
language : en
Publisher: CRC Press
Release Date : 2017-11-20

Survival Analysis With Interval Censored Data written by Kris Bogaerts and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-20 with Mathematics categories.


Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS provides the reader with a practical introduction into the analysis of interval-censored survival times. Although many theoretical developments have appeared in the last fifty years, interval censoring is often ignored in practice. Many are unaware of the impact of inappropriately dealing with interval censoring. In addition, the necessary software is at times difficult to trace. This book fills in the gap between theory and practice. Features: -Provides an overview of frequentist as well as Bayesian methods. -Include a focus on practical aspects and applications. -Extensively illustrates the methods with examples using R, SAS, and BUGS. Full programs are available on a supplementary website. The authors: Kris Bogaerts is project manager at I-BioStat, KU Leuven. He received his PhD in science (statistics) at KU Leuven on the analysis of interval-censored data. He has gained expertise in a great variety of statistical topics with a focus on the design and analysis of clinical trials. Arnošt Komárek is associate professor of statistics at Charles University, Prague. His subject area of expertise covers mainly survival analysis with the emphasis on interval-censored data and classification based on longitudinal data. He is past chair of the Statistical Modelling Society and editor of Statistical Modelling: An International Journal. Emmanuel Lesaffre is professor of biostatistics at I-BioStat, KU Leuven. His research interests include Bayesian methods, longitudinal data analysis, statistical modelling, analysis of dental data, interval-censored data, misclassification issues, and clinical trials. He is the founding chair of the Statistical Modelling Society, past-president of the International Society for Clinical Biostatistics, and fellow of ISI and ASA.



Multistate Models For The Analysis Of Life History Data


Multistate Models For The Analysis Of Life History Data
DOWNLOAD
Author : Richard J Cook
language : en
Publisher: CRC Press
Release Date : 2018-05-15

Multistate Models For The Analysis Of Life History Data written by Richard J Cook and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-15 with Mathematics categories.


Multistate Models for the Analysis of Life History Data provides the first comprehensive treatment of multistate modeling and analysis, including parametric, nonparametric and semiparametric methods applicable to many types of life history data. Special models such as illness-death, competing risks and progressive processes are considered, as well as more complex models. The book provides both theoretical development and illustrations of analysis based on data from randomized trials and observational cohort studies in health research. It features: Discusses a wide range of applications of multistate models, Presents methods for both continuously and intermittently observed life history processes, Gives a thorough discussion of conditionally independent censoring and observation processes, Discusses models with random effects and joint models for two or more multistate processes, Discusses and illustrates software for multistate analysis that is available in R, Target audience includes those engaged in research and applications involving multistate models.



Emerging Topics In Modeling Interval Censored Survival Data


Emerging Topics In Modeling Interval Censored Survival Data
DOWNLOAD
Author : Jianguo Sun
language : en
Publisher: Springer Nature
Release Date : 2022-11-29

Emerging Topics In Modeling Interval Censored Survival Data written by Jianguo Sun and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-29 with Mathematics categories.


This book primarily aims to discuss emerging topics in statistical methods and to booster research, education, and training to advance statistical modeling on interval-censored survival data. Commonly collected from public health and biomedical research, among other sources, interval-censored survival data can easily be mistaken for typical right-censored survival data, which can result in erroneous statistical inference due to the complexity of this type of data. The book invites a group of internationally leading researchers to systematically discuss and explore the historical development of the associated methods and their computational implementations, as well as emerging topics related to interval-censored data. It covers a variety of topics, including univariate interval-censored data, multivariate interval-censored data, clustered interval-censored data, competing risk interval-censored data, data with interval-censored covariates, interval-censored data from electric medical records, and misclassified interval-censored data. Researchers, students, and practitioners can directly make use of the state-of-the-art methods covered in the book to tackle their problems in research, education, training and consultation.



Handbook Of Survival Analysis


Handbook Of Survival Analysis
DOWNLOAD
Author : John P. Klein
language : en
Publisher: CRC Press
Release Date : 2016-04-19

Handbook Of Survival Analysis written by John P. Klein and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Mathematics categories.


Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians



Introducing Survival And Event History Analysis


Introducing Survival And Event History Analysis
DOWNLOAD
Author : Melinda Mills
language : en
Publisher: SAGE
Release Date : 2011-01-19

Introducing Survival And Event History Analysis written by Melinda Mills and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-01-19 with Social Science categories.


This book is an accessible, practical and comprehensive guide for researchers from multiple disciplines including biomedical, epidemiology, engineering and the social sciences. Written for accessibility, this book will appeal to students and researchers who want to understand the basics of survival and event history analysis and apply these methods without getting entangled in mathematical and theoretical technicalities. Inside, readers are offered a blueprint for their entire research project from data preparation to model selection and diagnostics. Engaging, easy to read, functional and packed with enlightening examples, ‘hands-on’ exercises, conversations with key scholars and resources for both students and instructors, this text allows researchers to quickly master advanced statistical techniques. It is written from the perspective of the ‘user’, making it suitable as both a self-learning tool and graduate-level textbook. Also included are up-to-date innovations in the field, including advancements in the assessment of model fit, unobserved heterogeneity, recurrent events and multilevel event history models. Practical instructions are also included for using the statistical programs of R, STATA and SPSS, enabling readers to replicate the examples described in the text.



Bayesian Survival Analysis


Bayesian Survival Analysis
DOWNLOAD
Author : Joseph G. Ibrahim
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Bayesian Survival Analysis written by Joseph G. Ibrahim and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Medical categories.


Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. Several topics are addressed, including parametric models, semiparametric models based on prior processes, proportional and non-proportional hazards models, frailty models, cure rate models, model selection and comparison, joint models for longitudinal and survival data, models with time varying covariates, missing covariate data, design and monitoring of clinical trials, accelerated failure time models, models for mulitivariate survival data, and special types of hierarchial survival models. Also various censoring schemes are examined including right and interval censored data. Several additional topics are discussed, including noninformative and informative prior specificiations, computing posterior qualities of interest, Bayesian hypothesis testing, variable selection, model selection with nonnested models, model checking techniques using Bayesian diagnostic methods, and Markov chain Monte Carlo (MCMC) algorithms for sampling from the posteiror and predictive distributions. The book presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all essentially from the health sciences, including cancer, AIDS, and the environment. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. This book would be most suitable for second or third year graduate students in statistics or biostatistics. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.