Modern Methods For Robust Regression

DOWNLOAD
Download Modern Methods For Robust Regression PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modern Methods For Robust Regression book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Modern Methods For Robust Regression
DOWNLOAD
Author : Robert Andersen
language : en
Publisher: SAGE Publications
Release Date : 2007-09-06
Modern Methods For Robust Regression written by Robert Andersen and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-06 with Social Science categories.
Modern Methods for Robust Regression offers a brief but in-depth treatment of various methods for detecting and properly handling influential cases in regression analysis. This volume, geared toward both future and practicing social scientists, is unique in that it takes an applied approach and offers readers empirical examples to illustrate key concepts. It is ideal for readers who are interested in the issues related to outliers and influential cases. Key Features Defines key terms necessary to understanding the robustness of an estimator: Because they form the basis of robust regression techniques, the book also deals with various measures of location and scale. Addresses the robustness of validity and efficiency: After having described the robustness of validity for an estimator, the author discusses its efficiency. Focuses on the impact of outliers: The book compares the robustness of a wide variety of estimators that attempt to limit the influence of unusual observations. Gives an overview of some traditional techniques: Both formal statistical tests and graphical methods detect influential cases in the general linear model. Offers a Web appendix: This volume provides readers with the data and the R code for the examples used in the book. Intended Audience This is an excellent text for intermediate and advanced Quantitative Methods and Statistics courses offered at the graduate level across the social sciences.
Modern Methods For Robust Regression
DOWNLOAD
Author : Robert Andersen
language : en
Publisher: SAGE
Release Date : 2008
Modern Methods For Robust Regression written by Robert Andersen and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Mathematics categories.
Offering an in-depth treatment of robust and resistant regression, this volume takes an applied approach and offers readers empirical examples to illustrate key concepts.
Modern Methods For Robust Regression
DOWNLOAD
Author : Robert Andersen (Ph. D.)
language : en
Publisher:
Release Date : 2008
Modern Methods For Robust Regression written by Robert Andersen (Ph. D.) and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Electronic books categories.
Offering an in-depth treatment of robust and resistant regression, this volume takes an applied approach and offers readers empirical examples to illustrate key concepts.
Modern Regression Methods
DOWNLOAD
Author : Thomas P. Ryan
language : en
Publisher: John Wiley & Sons
Release Date : 2008-11-10
Modern Regression Methods written by Thomas P. Ryan and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-11-10 with Mathematics categories.
"Over the years, I have had the opportunity to teach several regression courses, and I cannot think of a better undergraduate text than this one." —The American Statistician "The book is well written and has many exercises. It can serve as a very good textbook for scientists and engineers, with only basic statistics as a prerequisite. I also highly recommend it to practitioners who want to solve real-life prediction problems." (Computing Reviews) Modern Regression Methods, Second Edition maintains the accessible organization, breadth of coverage, and cutting-edge appeal that earned its predecessor the title of being one of the top five books for statisticians by an Amstat News book editor in 2003. This new edition has been updated and enhanced to include all-new information on the latest advances and research in the evolving field of regression analysis. The book provides a unique treatment of fundamental regression methods, such as diagnostics, transformations, robust regression, and ridge regression. Unifying key concepts and procedures, this new edition emphasizes applications to provide a more hands-on and comprehensive understanding of regression diagnostics. New features of the Second Edition include: A revised chapter on logistic regression, including improved methods of parameter estimation A new chapter focusing on additional topics of study in regression, including quantile regression, semiparametric regression, and Poisson regression A wealth of new and updated exercises with worked solutions An extensive FTP site complete with Minitab macros, which allow the reader to compute analyses, and specialized procedures Updated references at the end of each chapter that direct the reader to the appropriate resources for further study An accessible guide to state-of-the-art regression techniques, Modern Regression Methods, Second Edition is an excellent book for courses in regression analysis at the upper-undergraduate and graduate levels. It is also a valuable reference for practicing statisticians, engineers, and physical scientists.
Modern Regression Techniques Using R
DOWNLOAD
Author : Daniel B Wright
language : en
Publisher: SAGE
Release Date : 2009-02-19
Modern Regression Techniques Using R written by Daniel B Wright and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-02-19 with Mathematics categories.
Statistics is the language of modern empirical social and behavioural science and the varieties of regression form the basis of this language. Statistical and computing advances have led to new and exciting regressions that have become the necessary tools for any researcher in these fields. In a way that is refreshingly engaging and readable, Wright and London describe the most useful of these techniques and provide step-by-step instructions, using the freeware R, to analyze datasets that can be located on the books′ webpage: www.sagepub.co.uk/wrightandlondon. Techniques covered in this book include multilevel modeling, ANOVA and ANCOVA, path analysis, mediation and moderation, logistic regression (generalized linear models), generalized additive models, and robust methods. These are all tested out using a range of real research examples conducted by the authors in every chapter. Given the wide coverage of techniques, this book will be essential reading for any advanced undergraduate and graduate student (particularly in psychology) and for more experienced researchers wanting to learn how to apply some of the more recent statistical techniques to their datasets. The Authors are donating all royalties from the book to the American Partnership for Eosinophilic Disorders.
Introduction To Robust Estimation And Hypothesis Testing
DOWNLOAD
Author : Rand R. Wilcox
language : en
Publisher: Academic Press
Release Date : 2011-12-14
Introduction To Robust Estimation And Hypothesis Testing written by Rand R. Wilcox and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-12-14 with Mathematics categories.
This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical solutions to problems, and provides a brief background on the foundations of modern methods, placing the new methods in historical context. Author Rand Wilcox includes chapter exercises and many real-world examples that illustrate how various methods perform in different situations. Introduction to Robust Estimation and Hypothesis Testing, Second Edition, focuses on the practical applications of modern, robust methods which can greatly enhance our chances of detecting true differences among groups and true associations among variables. - Covers latest developments in robust regression - Covers latest improvements in ANOVA - Includes newest rank-based methods - Describes and illustrated easy to use software
Robust Statistics
DOWNLOAD
Author : Ricardo A. Maronna
language : en
Publisher: John Wiley & Sons
Release Date : 2019-01-04
Robust Statistics written by Ricardo A. Maronna and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-04 with Mathematics categories.
A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.
Modern Nonparametric Robust And Multivariate Methods
DOWNLOAD
Author : Klaus Nordhausen
language : en
Publisher: Springer
Release Date : 2015-10-05
Modern Nonparametric Robust And Multivariate Methods written by Klaus Nordhausen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-05 with Mathematics categories.
Written by leading experts in the field, this edited volume brings together the latest findings in the area of nonparametric, robust and multivariate statistical methods. The individual contributions cover a wide variety of topics ranging from univariate nonparametric methods to robust methods for complex data structures. Some examples from statistical signal processing are also given. The volume is dedicated to Hannu Oja on the occasion of his 65th birthday and is intended for researchers as well as PhD students with a good knowledge of statistics.
Regression Linear Modeling
DOWNLOAD
Author : Jason W. Osborne
language : en
Publisher:
Release Date : 2017
Regression Linear Modeling written by Jason W. Osborne and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Linear models (Statistics) categories.
In a conversational tone, Regression & Linear Modeling provides conceptual, user-friendly coverage of the generalized linear model (GLM). Readers will become familiar with applications of ordinary least squares (OLS) regression, binary and multinomial logistic regression, ordinal regression, Poisson regression, and loglinear models. The author returns to certain themes throughout the text, such as testing assumptions, examining data quality, and, where appropriate, nonlinear and non-additive effects modeled within different types of linear models.
Fundamentals Of Modern Statistical Methods
DOWNLOAD
Author : Rand R. Wilcox
language : en
Publisher: Springer
Release Date : 2010-03-10
Fundamentals Of Modern Statistical Methods written by Rand R. Wilcox and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-03-10 with Social Science categories.
Conventional statistical methods have a very serious flaw. They routinely miss differences among groups or associations among variables that are detected by more modern techniques, even under very small departures from normality. Hundreds of journal articles have described the reasons standard techniques can be unsatisfactory, but simple, intuitive explanations are generally unavailable. Situations arise where even highly nonsignificant results become significant when analyzed with more modern methods. Without assuming the reader has any prior training in statistics, Part I of this book describes basic statistical principles from a point of view that makes their shortcomings intuitive and easy to understand. The emphasis is on verbal and graphical descriptions of concepts. Part II describes modern methods that address the problems covered in Part I. Using data from actual studies, many examples are included to illustrate the practical problems with conventional procedures and how more modern methods can make a substantial difference in the conclusions reached in many areas of statistical research. The second edition of this book includes a number of advances and insights that have occurred since the first edition appeared. Included are new results relevant to medians, regression, measures of association, strategies for comparing dependent groups, methods for dealing with heteroscedasticity, and measures of effect size.