[PDF] Network Models For Data Science - eBooks Review

Network Models For Data Science


Network Models For Data Science
DOWNLOAD

Download Network Models For Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Network Models For Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Statistical Analysis Of Network Data


Statistical Analysis Of Network Data
DOWNLOAD
Author : Eric D. Kolaczyk
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-04-20

Statistical Analysis Of Network Data written by Eric D. Kolaczyk and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-20 with Computers categories.


In recent years there has been an explosion of network data – that is, measu- ments that are either of or from a system conceptualized as a network – from se- ingly all corners of science. The combination of an increasingly pervasive interest in scienti c analysis at a systems level and the ever-growing capabilities for hi- throughput data collection in various elds has fueled this trend. Researchers from biology and bioinformatics to physics, from computer science to the information sciences, and from economics to sociology are more and more engaged in the c- lection and statistical analysis of data from a network-centric perspective. Accordingly, the contributions to statistical methods and modeling in this area have come from a similarly broad spectrum of areas, often independently of each other. Many books already have been written addressing network data and network problems in speci c individual disciplines. However, there is at present no single book that provides a modern treatment of a core body of knowledge for statistical analysis of network data that cuts across the various disciplines and is organized rather according to a statistical taxonomy of tasks and techniques. This book seeks to ll that gap and, as such, it aims to contribute to a growing trend in recent years to facilitate the exchange of knowledge across the pre-existing boundaries between those disciplines that play a role in what is coming to be called ‘network science.



Network Models For Data Science


Network Models For Data Science
DOWNLOAD
Author : Alan Julian Izenman
language : en
Publisher: Cambridge University Press
Release Date : 2023-01-05

Network Models For Data Science written by Alan Julian Izenman and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-05 with Mathematics categories.


This text on the theory and applications of network science is aimed at beginning graduate students in statistics, data science, computer science, machine learning, and mathematics, as well as advanced students in business, computational biology, physics, social science, and engineering working with large, complex relational data sets. It provides an exciting array of analysis tools, including probability models, graph theory, and computational algorithms, exposing students to ways of thinking about types of data that are different from typical statistical data. Concepts are demonstrated in the context of real applications, such as relationships between financial institutions, between genes or proteins, between neurons in the brain, and between terrorist groups. Methods and models described in detail include random graph models, percolation processes, methods for sampling from huge networks, network partitioning, and community detection. In addition to static networks the book introduces dynamic networks such as epidemics, where time is an important component.



Algorithms And Models For Network Data And Link Analysis


Algorithms And Models For Network Data And Link Analysis
DOWNLOAD
Author : François Fouss
language : en
Publisher: Cambridge University Press
Release Date : 2016-07-12

Algorithms And Models For Network Data And Link Analysis written by François Fouss and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-12 with Computers categories.


A hands-on, entry-level guide to algorithms for extracting information about social and economic behavior from network data.



A Survey Of Statistical Network Models


A Survey Of Statistical Network Models
DOWNLOAD
Author : Anna Goldenberg
language : en
Publisher: Now Publishers Inc
Release Date : 2010

A Survey Of Statistical Network Models written by Anna Goldenberg and has been published by Now Publishers Inc this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Computers categories.


Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.



Network Science Models For Data Analytics Automation


Network Science Models For Data Analytics Automation
DOWNLOAD
Author : Xin W. Chen
language : en
Publisher: Springer Nature
Release Date : 2022-02-21

Network Science Models For Data Analytics Automation written by Xin W. Chen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-21 with Technology & Engineering categories.


This book explains network science and its applications in data analytics for critical infrastructures, engineered systems, and knowledge acquisition. Each chapter describes step-by-step processes of how network science enables and automates data analytics through examples. The book not only dissects modeling techniques and analytical results but also explores the intrinsic development of these models and analyses. This unique approach bridges the gap between theory and practice and channels’ managerial and problem-solving skills. Engineers, researchers, and managers would benefit from the extensive theoretical background and practical examples discussed in this book. Advanced undergraduate students and graduate students in mathematics, statistics, engineering, business, public health, and social science may use this book as a one-semester textbook or a reference book. Readers who are more interested in applications may skip Chapter 1 and peruse through the rest of the book with ease.



Statistical Analysis Of Network Data With R


Statistical Analysis Of Network Data With R
DOWNLOAD
Author : Eric D. Kolaczyk
language : en
Publisher: Springer
Release Date : 2014-05-22

Statistical Analysis Of Network Data With R written by Eric D. Kolaczyk and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-22 with Computers categories.


Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).



Probabilistic Foundations Of Statistical Network Analysis


Probabilistic Foundations Of Statistical Network Analysis
DOWNLOAD
Author : Harry Crane
language : en
Publisher: CRC Press
Release Date : 2018-04-17

Probabilistic Foundations Of Statistical Network Analysis written by Harry Crane and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-17 with Business & Economics categories.


Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane’s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane’s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND’s Project AIR FORCE.



Inferential Network Analysis


Inferential Network Analysis
DOWNLOAD
Author : Skyler J. Cranmer
language : en
Publisher: Cambridge University Press
Release Date : 2020-11-19

Inferential Network Analysis written by Skyler J. Cranmer and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-19 with Business & Economics categories.


Pioneering introduction of unprecedented breadth and scope to inferential and statistical methods for network analysis.



Data Science And Complex Networks


Data Science And Complex Networks
DOWNLOAD
Author : Guido Caldarelli
language : en
Publisher: Oxford University Press
Release Date : 2016-11-10

Data Science And Complex Networks written by Guido Caldarelli and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Science categories.


This book provides a comprehensive yet short description of the basic concepts of Complex Network theory. In contrast to other books the authors present these concepts through real case studies. The application topics span from Foodwebs, to the Internet, the World Wide Web and the Social Networks, passing through the International Trade Web and Financial time series. The final part is devoted to definition and implementation of the most important network models. The text provides information on the structure of the data and on the quality of available datasets. Furthermore it provides a series of codes to allow immediate implementation of what is theoretically described in the book. Readers already used to the concepts introduced in this book can learn the art of coding in Python by using the online material. To this purpose the authors have set up a dedicated web site where readers can download and test the codes. The whole project is aimed as a learning tool for scientists and practitioners, enabling them to begin working instantly in the field of Complex Networks.



Web And Network Data Science


Web And Network Data Science
DOWNLOAD
Author : Thomas W. Miller
language : en
Publisher: FT Press
Release Date : 2014-12-19

Web And Network Data Science written by Thomas W. Miller and has been published by FT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-19 with Business & Economics categories.


Master modern web and network data modeling: both theory and applications. In Web and Network Data Science, a top faculty member of Northwestern University’s prestigious analytics program presents the first fully-integrated treatment of both the business and academic elements of web and network modeling for predictive analytics. Some books in this field focus either entirely on business issues (e.g., Google Analytics and SEO); others are strictly academic (covering topics such as sociology, complexity theory, ecology, applied physics, and economics). This text gives today's managers and students what they really need: integrated coverage of concepts, principles, and theory in the context of real-world applications. Building on his pioneering Web Analytics course at Northwestern University, Thomas W. Miller covers usability testing, Web site performance, usage analysis, social media platforms, search engine optimization (SEO), and many other topics. He balances this practical coverage with accessible and up-to-date introductions to both social network analysis and network science, demonstrating how these disciplines can be used to solve real business problems.