[PDF] Neural Networks For Perception - eBooks Review

Neural Networks For Perception


Neural Networks For Perception
DOWNLOAD

Download Neural Networks For Perception PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neural Networks For Perception book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Deep Learning For Robot Perception And Cognition


Deep Learning For Robot Perception And Cognition
DOWNLOAD
Author : Alexandros Iosifidis
language : en
Publisher: Academic Press
Release Date : 2022-02-04

Deep Learning For Robot Perception And Cognition written by Alexandros Iosifidis and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-04 with Technology & Engineering categories.


Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis



Neural Networks For Perception


Neural Networks For Perception
DOWNLOAD
Author : Harry Wechsler
language : en
Publisher:
Release Date : 1992

Neural Networks For Perception written by Harry Wechsler and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1992 with Neural networks (Computer science) categories.




Neural Networks For Perception


Neural Networks For Perception
DOWNLOAD
Author : Harry Wechsler
language : en
Publisher: Academic Press
Release Date : 2014-05-10

Neural Networks For Perception written by Harry Wechsler and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-10 with Computers categories.


Neural Networks for Perception, Volume 1: Human and Machine Perception focuses on models for understanding human perception in terms of distributed computation and examples of PDP models for machine perception. This book addresses both theoretical and practical issues related to the feasibility of both explaining human perception and implementing machine perception in terms of neural network models. The book is organized into two parts. The first part focuses on human perception. Topics on network model of object recognition in human vision, the self-organization of functional architecture in the cerebral cortex, and the structure and interpretation of neuronal codes in the visual system are detailed under this part. Part two covers the relevance of neural networks for machine perception. Subjects considered under this section include the multi-dimensional linear lattice for Fourier and Gabor transforms, multiple- scale Gaussian filtering, and edge detection; aspects of invariant pattern and object recognition; and neural network for motion processing. Neuroscientists, computer scientists, engineers, and researchers in artificial intelligence will find the book useful.



Neural Networks For Perception


Neural Networks For Perception
DOWNLOAD
Author : Harry Wechsler
language : en
Publisher: Academic Press
Release Date : 2014-05-10

Neural Networks For Perception written by Harry Wechsler and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-10 with Computers categories.


Neural Networks for Perception, Volume 2: Computation, Learning, and Architectures explores the computational and adaptation problems related to the use of neuronal systems, and the corresponding hardware architectures capable of implementing neural networks for perception and of coping with the complexity inherent in massively distributed computation. This book addresses both theoretical and practical issues related to the feasibility of both explaining human perception and implementing machine perception in terms of neural network models. The text is organized into two sections. The first section, computation and learning, discusses topics on learning visual behaviors, some of the elementary theory of the basic backpropagation neural network architecture, and computation and learning in the context of neural network capacity. The second section is on hardware architecture. The chapters included in this part of the book describe the architectures and possible applications of recent neurocomputing models. The Cohen-Grossberg model of associative memory, hybrid optical/digital architectures for neorocomputing, and electronic circuits for adaptive synapses are some of the subjects elucidated. Neuroscientists, computer scientists, engineers, and researchers in artificial intelligence will find the book useful.



Neural Network Perception For Mobile Robot Guidance


Neural Network Perception For Mobile Robot Guidance
DOWNLOAD
Author : Dean A. Pomerleau
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Neural Network Perception For Mobile Robot Guidance written by Dean A. Pomerleau and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Technology & Engineering categories.


Dean Pomerleau's trainable road tracker, ALVINN, is arguably the world's most famous neural net application. It currently holds the world's record for distance traveled by an autonomous robot without interruption: 21.2 miles along a highway, in traffic, at speedsofup to 55 miles per hour. Pomerleau's work has received worldwide attention, including articles in Business Week (March 2, 1992), Discover (July, 1992), and German and Japanese science magazines. It has been featured in two PBS series, "The Machine That Changed the World" and "By the Year 2000," and appeared in news segments on CNN, the Canadian news and entertainment program "Live It Up", and the Danish science program "Chaos". What makes ALVINN especially appealing is that it does not merely drive - it learns to drive, by watching a human driver for roughly five minutes. The training inputstothe neural networkare a video imageoftheroad ahead and thecurrentposition of the steering wheel. ALVINN has learned to drive on single lane, multi-lane, and unpaved roads. It rapidly adapts to other sensors: it learned to drive at night using laser reflectance imaging, and by using a laser rangefinder it learned to swerve to avoid obstacles and maintain a fixed distance from a row of parked cars. It has even learned to drive backwards.



Probabilistic Models Of The Brain


Probabilistic Models Of The Brain
DOWNLOAD
Author : Rajesh P. N. Rao
language : en
Publisher: Bradford Books
Release Date : 2002

Probabilistic Models Of The Brain written by Rajesh P. N. Rao and has been published by Bradford Books this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Computers categories.


Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.



Analogy Making As Perception


Analogy Making As Perception
DOWNLOAD
Author : Melanie Mitchell
language : en
Publisher: Bradford Book
Release Date : 1993

Analogy Making As Perception written by Melanie Mitchell and has been published by Bradford Book this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Analogy categories.


The psychologist William James observed that "a native talent for perceiving analogies is... the leading fact in genius of every order." The centrality and the ubiquity of analogy in creative thought have been noted again and again by scientists, artists, and writers, and understanding and modeling analogical thought have emerged as two of the most important challenges for cognitive science.Analogy-Making as Perception is based on the premise that analogy-making is fundamentally a high-level perceptual process in which the interaction of perception and concepts gives rise to "conceptual slippages" which allow analogies to be made. It describes Copycat - a computer model of analogymaking, developed by the author with Douglas Hofstadter, that models the complex, subconscious interaction between perception and concepts that underlies the creation of analogies.In Copycat, both concepts and high-level perception are emergent phenomena, arising from large numbers of low-level, parallel, non-deterministic activities. In the spectrum of cognitive modeling approaches, Copycat occupies a unique intermediate position between symbolic systems and connectionist systems a position that is at present the most useful one for understanding the fluidity of concepts and high-level perception.On one level the work described here is about analogy-making, but on another level it is about cognition in general. It explores such issues as the nature of concepts and perception and the emergence of highly flexible concepts from a lower-level "subcognitive" substrate.Melanie Mitchell, Assistant Professor in the Department of Electrical Engineering and Computer Science at the University of Michigan, is a Fellow of the Michigan Society of Fellows. She is also Director of the Adaptive Computation Program at the Santa Fe Institute.



Neural Networks For Perception


Neural Networks For Perception
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1992

Neural Networks For Perception written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1992 with categories.




Strengthening Deep Neural Networks


Strengthening Deep Neural Networks
DOWNLOAD
Author : Katy Warr
language : en
Publisher: O'Reilly Media
Release Date : 2019-07-03

Strengthening Deep Neural Networks written by Katy Warr and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-03 with Computers categories.


As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process image, audio, and video data. Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If you’re a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone fascinated by the differences between artificial and biological perception, this book is for you. Delve into DNNs and discover how they could be tricked by adversarial input Investigate methods used to generate adversarial input capable of fooling DNNs Explore real-world scenarios and model the adversarial threat Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data Examine some ways in which AI might become better at mimicking human perception in years to come



Dynamic Interactions In Neural Networks Models And Data


Dynamic Interactions In Neural Networks Models And Data
DOWNLOAD
Author : Michael A. Arbib
language : en
Publisher: Springer Science & Business Media
Release Date : 1989

Dynamic Interactions In Neural Networks Models And Data written by Michael A. Arbib and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989 with Computers categories.


The study of neural networks is enjoying a great renaissance, both in computational neuroscience, the development of information processing models of living brains, and in neural computing, the use of neurally inspired concepts in the construction of "intelligent" machines. Thus the title of this volume has two interpretations: It presents models and data on the dynamic interactions occurring in the brain, and it exhibits the dynamic interactions between research in computational neuroscience and in neural computing, as scientists seek to find common principles to guide the understanding of the living brain and the design of artificial neural networks. This collection of contributions presents the current state of research, future trends and open problems in an exciting field of today's science.