Neural Networks In Business Techniques And Applications

DOWNLOAD
Download Neural Networks In Business Techniques And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neural Networks In Business Techniques And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Neural Networks In Business Techniques And Applications
DOWNLOAD
Author : Gupta, Jatinder N. D.
language : en
Publisher: IGI Global
Release Date : 2001-07-01
Neural Networks In Business Techniques And Applications written by Gupta, Jatinder N. D. and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-07-01 with Computers categories.
Neural Networks in Business: Techniques and Applications aims to be an introductory reference book for professionals, students and academics interested in applying neural networks to a variety of business applications. The book introduces the three most common neural network models and how they work, followed by a wide range of business applications and a series of case studies presented from contributing authors around the world.
Biomedical And Business Applications Using Artificial Neural Networks And Machine Learning
DOWNLOAD
Author : Richard Segall
language : en
Publisher: Engineering Science Reference
Release Date : 2021-11
Biomedical And Business Applications Using Artificial Neural Networks And Machine Learning written by Richard Segall and has been published by Engineering Science Reference this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11 with Medicine categories.
"This book covers applications of artificial neural networks (ANN) and machine learning (ML) aspects of artificial intelligence to applications to the biomedical and business world including their interface to applications for screening for diseases to applications to large-scale credit card purchasing patterns"--
Business Applications Of Neural Networks
DOWNLOAD
Author : Bill Edisbury
language : en
Publisher: World Scientific
Release Date : 2000
Business Applications Of Neural Networks written by Bill Edisbury and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Business & Economics categories.
Neural networks are increasingly being used in real-world business applications and, in some cases, such as fraud detection, they have already become the method of choice. Their use for risk assessment is also growing and they have been employed to visualise complex databases for marketing segmentation. This boom in applications covers a wide range of business interests - from finance management, through forecasting, to production. The combination of statistical, neural and fuzzy methods now enables direct quantitative studies to be carried out without the need for rocket-science expertise. This is a review of the state-of-the-art in applications of neural-network methods in three important areas of business analysis. It includes a tutorial chapter to introduce new users to the potential and pitfalls of this new technology.
Artificial Neural Networks In Real Life Applications
DOWNLOAD
Author : Juan Ramon Rabunal
language : en
Publisher: IGI Global
Release Date : 2006-01-01
Artificial Neural Networks In Real Life Applications written by Juan Ramon Rabunal and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-01 with Technology & Engineering categories.
"This book offers an outlook of the most recent works at the field of the Artificial Neural Networks (ANN), including theoretical developments and applications of systems using intelligent characteristics for adaptability"--Provided by publisher.
Research Anthology On Artificial Neural Network Applications
DOWNLOAD
Author : Management Association, Information Resources
language : en
Publisher: IGI Global
Release Date : 2021-07-16
Research Anthology On Artificial Neural Network Applications written by Management Association, Information Resources and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-16 with Computers categories.
Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.
Mastering Machine Learning Algorithms
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-25
Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-25 with Computers categories.
Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is for This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.
Artificial Neural Network Modelling
DOWNLOAD
Author : Subana Shanmuganathan
language : en
Publisher: Springer
Release Date : 2016-02-03
Artificial Neural Network Modelling written by Subana Shanmuganathan and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-03 with Technology & Engineering categories.
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling.
Neural Networks In Business Forecasting
DOWNLOAD
Author : G. Peter Zhang
language : en
Publisher: IGI Global
Release Date : 2004-01-01
Neural Networks In Business Forecasting written by G. Peter Zhang and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-01-01 with Computers categories.
Forecasting is one of the most important activities that form the basis for strategic, tactical, and operational decisions in all business organizations. Recently, neural networks have emerged as an important tool for business forecasting. There are considerable interests and applications in forecasting using neural networks. Neural Networks in Business Forecasting provides for researchers and practitioners some recent advances in applying neural networks to business forecasting. A number of case studies demonstrating the innovative or successful applications of neural networks to many areas of business as well as methods to improve neural network forecasting performance are presented.
Introduction To Neural Networks And Data Mining For Business Applications
DOWNLOAD
Author : Kate A. Smith
language : en
Publisher:
Release Date : 1999
Introduction To Neural Networks And Data Mining For Business Applications written by Kate A. Smith and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999 with Business categories.
Neural networks are a hot topic in the business community today. Also marketed as intelligent techniques, business intelligence and data mining, many businesses are now realising the potential of neural networks to give them a competitive edge. Nevertheless most neural network books are written by electrical engineers for electrical engineers, with a high level of mathematics. Those few books aimed at the business community invariably focus exclusively on financial prediction. Consequently, Introduction to Neural Networks and Data Mining for Business Applications is a ground breaking text. With a minimum of mathematics, it shows the potential of neural networks to unlock hidden information in data of various industries including retail, marketing, insurance, telecommunications, banking and finance, and operations management. The book covers the development of neural network research and its impact on business; the early neural Perceptron model and its limitations; backpropagation, the most commonly used learning paradigm in business applications; self-organisation; and adaptive resonance theory. Data mining is then covered including the purpose, methodology, and concepts of directed and undirected knowledge discovery. Other intelligent techniques often used in conjunction with neural networks are also covered, including genetic algorithms, fuzzy logic, and expert systems. The text concludes with a discussion of the future of neural networks research and applications. Extensive business case studies are used throughout the text to demonstrate techniques.
Artificial Neural Networks
DOWNLOAD
Author : Petia Koprinkova-Hristova
language : en
Publisher: Springer
Release Date : 2014-09-02
Artificial Neural Networks written by Petia Koprinkova-Hristova and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-02 with Technology & Engineering categories.
The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new algorithms for prototype selection, and group structure discovering. Moreover, the book discusses one-class support vector machines for pattern recognition, handwritten digit recognition, time series forecasting and classification, and anomaly identification in data analytics and automated data analysis. By presenting the state-of-the-art and discussing the current challenges in the fields of artificial neural networks, bioinformatics and neuroinformatics, the book is intended to promote the implementation of new methods and improvement of existing ones, and to support advanced students, researchers and professionals in their daily efforts to identify, understand and solve a number of open questions in these fields.