[PDF] Neural Networks Modeling And Control - eBooks Review

Neural Networks Modeling And Control


Neural Networks Modeling And Control
DOWNLOAD

Download Neural Networks Modeling And Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Neural Networks Modeling And Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Neural Networks For Modelling And Control Of Dynamic Systems


Neural Networks For Modelling And Control Of Dynamic Systems
DOWNLOAD
Author : M. Norgaard
language : en
Publisher:
Release Date : 2003

Neural Networks For Modelling And Control Of Dynamic Systems written by M. Norgaard and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with categories.




Artificial Neural Networks For Modelling And Control Of Non Linear Systems


Artificial Neural Networks For Modelling And Control Of Non Linear Systems
DOWNLOAD
Author : Johan A.K. Suykens
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Artificial Neural Networks For Modelling And Control Of Non Linear Systems written by Johan A.K. Suykens and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Technology & Engineering categories.


Artificial neural networks possess several properties that make them particularly attractive for applications to modelling and control of complex non-linear systems. Among these properties are their universal approximation ability, their parallel network structure and the availability of on- and off-line learning methods for the interconnection weights. However, dynamic models that contain neural network architectures might be highly non-linear and difficult to analyse as a result. Artificial Neural Networks for Modelling and Control of Non-Linear Systems investigates the subject from a system theoretical point of view. However the mathematical theory that is required from the reader is limited to matrix calculus, basic analysis, differential equations and basic linear system theory. No preliminary knowledge of neural networks is explicitly required. The book presents both classical and novel network architectures and learning algorithms for modelling and control. Topics include non-linear system identification, neural optimal control, top-down model based neural control design and stability analysis of neural control systems. A major contribution of this book is to introduce NLq Theory as an extension towards modern control theory, in order to analyze and synthesize non-linear systems that contain linear together with static non-linear operators that satisfy a sector condition: neural state space control systems are an example. Moreover, it turns out that NLq Theory is unifying with respect to many problems arising in neural networks, systems and control. Examples show that complex non-linear systems can be modelled and controlled within NLq theory, including mastering chaos. The didactic flavor of this book makes it suitable for use as a text for a course on Neural Networks. In addition, researchers and designers will find many important new techniques, in particular NLqemTheory, that have applications in control theory, system theory, circuit theory and Time Series Analysis.



Neural Network Applications In Control


Neural Network Applications In Control
DOWNLOAD
Author : George William Irwin
language : en
Publisher: IET
Release Date : 1995

Neural Network Applications In Control written by George William Irwin and has been published by IET this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Computers categories.


The aim is to present an introduction to, and an overview of, the present state of neural network research and development, with an emphasis on control systems application studies. The book is useful to a range of levels of reader. The earlier chapters introduce the more popular networks and the fundamental control principles, these are followed by a series of application studies, most of which are industrially based, and the book concludes with a consideration of some recent research.



Fuzzy Neural Networks For Real Time Control Applications


Fuzzy Neural Networks For Real Time Control Applications
DOWNLOAD
Author : Erdal Kayacan
language : en
Publisher: Butterworth-Heinemann
Release Date : 2015-10-07

Fuzzy Neural Networks For Real Time Control Applications written by Erdal Kayacan and has been published by Butterworth-Heinemann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-07 with Mathematics categories.


AN INDISPENSABLE RESOURCE FOR ALL THOSE WHO DESIGN AND IMPLEMENT TYPE-1 AND TYPE-2 FUZZY NEURAL NETWORKS IN REAL TIME SYSTEMS Delve into the type-2 fuzzy logic systems and become engrossed in the parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis with this book! Not only does this book stand apart from others in its focus but also in its application-based presentation style. Prepared in a way that can be easily understood by those who are experienced and inexperienced in this field. Readers can benefit from the computer source codes for both identification and control purposes which are given at the end of the book. A clear and an in-depth examination has been made of all the necessary mathematical foundations, type-1 and type-2 fuzzy neural network structures and their learning algorithms as well as their stability analysis. You will find that each chapter is devoted to a different learning algorithm for the tuning of type-1 and type-2 fuzzy neural networks; some of which are: • Gradient descent • Levenberg-Marquardt • Extended Kalman filter In addition to the aforementioned conventional learning methods above, number of novel sliding mode control theory-based learning algorithms, which are simpler and have closed forms, and their stability analysis have been proposed. Furthermore, hybrid methods consisting of particle swarm optimization and sliding mode control theory-based algorithms have also been introduced. The potential readers of this book are expected to be the undergraduate and graduate students, engineers, mathematicians and computer scientists. Not only can this book be used as a reference source for a scientist who is interested in fuzzy neural networks and their real-time implementations but also as a course book of fuzzy neural networks or artificial intelligence in master or doctorate university studies. We hope that this book will serve its main purpose successfully. - Parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis - Contains algorithms that are applicable to real time systems - Introduces fast and simple adaptation rules for type-1 and type-2 fuzzy neural networks - Number of case studies both in identification and control - Provides MATLAB® codes for some algorithms in the book



Discrete Time High Order Neural Control


Discrete Time High Order Neural Control
DOWNLOAD
Author : Edgar N. Sanchez
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-04-29

Discrete Time High Order Neural Control written by Edgar N. Sanchez and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-04-29 with Mathematics categories.


Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem,nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementations.



Neural Systems For Control


Neural Systems For Control
DOWNLOAD
Author : Omid Omidvar
language : en
Publisher: Elsevier
Release Date : 1997-02-24

Neural Systems For Control written by Omid Omidvar and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-02-24 with Computers categories.


Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. - Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory - Represents the most up-to-date developments in this rapidly growing application area of neural networks - Takes a new and novel approach to system identification and synthesis



Neural Networks For Identification Prediction And Control


Neural Networks For Identification Prediction And Control
DOWNLOAD
Author : D. T. Pham
language : en
Publisher:
Release Date : 1995

Neural Networks For Identification Prediction And Control written by D. T. Pham and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Neural networks (Computer science) categories.


This publication describes examples of applications of neural networks in modelling, prediction and control. Topics covered include identification of general linear and nonlinear processes, forecasting of river levels, stock market prices, currency exchange rates, and control of a time-delayed plant and a two-joint robot. The neural network types considered are the multilayer perceptron (MLP), the Elman and Jordan networks, the Group-Method-of-Data-Handling (GMDH), the cerebellar-model-articulation-controller (CMAC) networks and neuromorphic fuzzy logic systems. The algorithms presented are the standard backpropagation (BP) algorithm, the Widrow-Hoff learning, dynamic BP and evolutionary learning. Full listings of computer programs written in C for neural-network-based system identification and prediction to facilitate practical experimentation with neural network techniques are included.



Process Neural Networks


Process Neural Networks
DOWNLOAD
Author : Xingui He
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-07-05

Process Neural Networks written by Xingui He and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-07-05 with Computers categories.


"Process Neural Network: Theory and Applications" proposes the concept and model of a process neural network for the first time, showing how it expands the mapping relationship between the input and output of traditional neural networks and enhances the expression capability for practical problems, with broad applicability to solving problems relating to processes in practice. Some theoretical problems such as continuity, functional approximation capability, and computing capability, are closely examined. The application methods, network construction principles, and optimization algorithms of process neural networks in practical fields, such as nonlinear time-varying system modeling, process signal pattern recognition, dynamic system identification, and process forecast, are discussed in detail. The information processing flow and the mapping relationship between inputs and outputs of process neural networks are richly illustrated. Xingui He is a member of Chinese Academy of Engineering and also a professor at the School of Electronic Engineering and Computer Science, Peking University, China, where Shaohua Xu also serves as a professor.



Neural Networks Modeling And Control


Neural Networks Modeling And Control
DOWNLOAD
Author : Jorge D. Rios
language : en
Publisher: Academic Press
Release Date : 2020-01-15

Neural Networks Modeling And Control written by Jorge D. Rios and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-15 with Science categories.


Neural Networks Modelling and Control: Applications for Unknown Nonlinear Delayed Systems in Discrete Time focuses on modeling and control of discrete-time unknown nonlinear delayed systems under uncertainties based on Artificial Neural Networks. First, a Recurrent High Order Neural Network (RHONN) is used to identify discrete-time unknown nonlinear delayed systems under uncertainties, then a RHONN is used to design neural observers for the same class of systems. Therefore, both neural models are used to synthesize controllers for trajectory tracking based on two methodologies: sliding mode control and Inverse Optimal Neural Control. As well as considering the different neural control models and complications that are associated with them, this book also analyzes potential applications, prototypes and future trends. - Provide in-depth analysis of neural control models and methodologies - Presents a comprehensive review of common problems in real-life neural network systems - Includes an analysis of potential applications, prototypes and future trends



Neural Networks In Bioprocessing And Chemical Engineering


Neural Networks In Bioprocessing And Chemical Engineering
DOWNLOAD
Author : D. R. Baughman
language : en
Publisher: Academic Press
Release Date : 1995

Neural Networks In Bioprocessing And Chemical Engineering written by D. R. Baughman and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Computers categories.


Neural networks have received a great deal of attention among scientists and engineers. In chemical engineering, neural computing has moved from pioneering projects toward mainstream industrial applications. This book introduces the fundamental principles of neural computing, and is the first to focus on its practical applications in bioprocessing and chemical engineering. Examples, problems, and 10 detailed case studies demonstrate how to develop, train, and apply neural networks. A disk containing input data files for all illustrative examples, case studies, and practice problems provides the opportunity for hands-on experience. An important goal of the book is to help the student or practitioner learn and implement neural networks quickly and inexpensively using commercially available, PC-based software tools. Detailed network specifications and training procedures are included for all neural network examples discussed in the book.