Nonlinear Dynamics Of Discrete And Continuous Systems

DOWNLOAD
Download Nonlinear Dynamics Of Discrete And Continuous Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonlinear Dynamics Of Discrete And Continuous Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Nonlinear Dynamics Of Discrete And Continuous Systems
DOWNLOAD
Author : Andrei K. Abramian
language : en
Publisher: Springer
Release Date : 2020-11-03
Nonlinear Dynamics Of Discrete And Continuous Systems written by Andrei K. Abramian and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-03 with Science categories.
This book commemorates the 60th birthday of Dr. Wim van Horssen, a specialist in nonlinear dynamic and wave processes in solids, fluids and structures. In honor of Dr. Horssen’s contributions to the field, it presents papers discussing topics such as the current problems of the theory of nonlinear dynamic processes in continua and structures; applications, including discrete and continuous dynamic models of structures and media; and problems of asymptotic approaches.
Stability Of Dynamical Systems
DOWNLOAD
Author :
language : en
Publisher: Springer Science & Business Media
Release Date : 2008
Stability Of Dynamical Systems written by and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Differentiable dynamical systems categories.
In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.
Nonlinear Dynamics
DOWNLOAD
Author : Marc R Roussel
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2019-05-01
Nonlinear Dynamics written by Marc R Roussel and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-01 with Science categories.
This book uses a hands-on approach to nonlinear dynamics using commonly available software, including the free dynamical systems software Xppaut, Matlab (or its free cousin, Octave) and the Maple symbolic algebra system. Detailed instructions for various common procedures, including bifurcation analysis using the version of AUTO embedded in Xppaut, are provided. This book also provides a survey that can be taught in a single academic term covering a greater variety of dynamical systems (discrete versus continuous time, finite versus infinite-dimensional, dissipative versus conservative) than is normally seen in introductory texts. Numerical computation and linear stability analysis are used as unifying themes throughout the book. Despite the emphasis on computer calculations, theory is not neglected, and fundamental concepts from the field of nonlinear dynamics such as solution maps and invariant manifolds are presented.
Discrete And Continuous Nonlinear Schr Dinger Systems
DOWNLOAD
Author : M. J. Ablowitz
language : en
Publisher: Cambridge University Press
Release Date : 2004
Discrete And Continuous Nonlinear Schr Dinger Systems written by M. J. Ablowitz and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Mathematics categories.
In recent years there have been important and far reaching developments in the study of nonlinear waves and a class of nonlinear wave equations which arise frequently in applications. The wide interest in this field comes from the understanding of special waves called 'solitons' and the associated development of a method of solution to a class of nonlinear wave equations termed the inverse scattering transform (IST). Before these developments, very little was known about the solutions to such 'soliton equations'. The IST technique applies to both continuous and discrete nonlinear Schrödinger equations of scalar and vector type. Also included is the IST for the Toda lattice and nonlinear ladder network, which are well-known discrete systems. This book, first published in 2003, presents the detailed mathematical analysis of the scattering theory; soliton solutions are obtained and soliton interactions, both scalar and vector, are analyzed. Much of the material is not available in the previously-published literature.
Nonlinear Dynamics
DOWNLOAD
Author : Alfredo Medio
language : en
Publisher: Cambridge University Press
Release Date : 2001-10-11
Nonlinear Dynamics written by Alfredo Medio and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-10-11 with Business & Economics categories.
A systematic and comprehensive introduction to the study of nonlinear dynamical systems, in both discrete and continuous time, for nonmathematical students and researchers working in applied fields. An understanding of linear systems and the classical theory of stability are essential although basic reviews of the relevant material are provided. Further chapters are devoted to the stability of invariant sets, bifurcation theory, chaotic dynamics and the transition to chaos. In the final two chapters the authors approach the subject from a measure-theoretical point of view and compare results to those given for the geometrical or topological approach of the first eight chapters. Includes about one hundred exercises. A Windows-compatible software programme called DMC, provided free of charge through a website dedicated to the book, allows readers to perform numerical and graphical analysis of dynamical systems. Also available on the website are computer exercises and solutions to selected book exercises. See www.cambridge.org/economics/resources
Discrete Dynamical Models
DOWNLOAD
Author : Ernesto Salinelli
language : en
Publisher: Springer
Release Date : 2014-06-11
Discrete Dynamical Models written by Ernesto Salinelli and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-11 with Mathematics categories.
This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economics. The exposition is self-contained: some appendices present prerequisites, algorithms and suggestions for computer simulations. The analysis of several examples is enriched by the proposition of many related exercises of increasing difficulty; in the last chapter the detailed solution is given for most of them.
Synchronization In Complex Networks Of Nonlinear Dynamical Systems
DOWNLOAD
Author : Chai Wah Wu
language : en
Publisher: World Scientific
Release Date : 2007
Synchronization In Complex Networks Of Nonlinear Dynamical Systems written by Chai Wah Wu and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Mathematics categories.
This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ideas from systems theory, linear algebra and graph theory and the synergy between them that are necessary to derive synchronization conditions. Many of the results, which have been obtained fairly recently and have until now not appeared in textbook form, are presented with complete proofs. This text is suitable for graduate-level study or for researchers who would like to be better acquainted with the latest research in this area. Sample Chapter(s). Chapter 1: Introduction (76 KB). Contents: Graphs, Networks, Laplacian Matrices and Algebraic Connectivity; Graph Models; Synchronization in Networks of Nonlinear Continuous-Time Dynamical Systems; Synchronization in Networks of Coupled Discrete-Time Systems; Synchronization in Network of Systems with Linear Dynamics; Agreement and Consensus Problems in Groups of Interacting Agents. Readership: Graduate students and researchers in physics, applied mathematics and engineering.
An Introduction To Dynamical Systems And Chaos
DOWNLOAD
Author : G.C. Layek
language : en
Publisher: Springer
Release Date : 2019-03-14
An Introduction To Dynamical Systems And Chaos written by G.C. Layek and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-14 with Mathematics categories.
The book discusses continuous and discrete systems in systematic and sequential approaches for all aspects of nonlinear dynamics. The unique feature of the book is its mathematical theories on flow bifurcations, oscillatory solutions, symmetry analysis of nonlinear systems and chaos theory. The logically structured content and sequential orientation provide readers with a global overview of the topic. A systematic mathematical approach has been adopted, and a number of examples worked out in detail and exercises have been included. Chapters 1–8 are devoted to continuous systems, beginning with one-dimensional flows. Symmetry is an inherent character of nonlinear systems, and the Lie invariance principle and its algorithm for finding symmetries of a system are discussed in Chap. 8. Chapters 9–13 focus on discrete systems, chaos and fractals. Conjugacy relationship among maps and its properties are described with proofs. Chaos theory and its connection with fractals, Hamiltonian flows and symmetries of nonlinear systems are among the main focuses of this book. Over the past few decades, there has been an unprecedented interest and advances in nonlinear systems, chaos theory and fractals, which is reflected in undergraduate and postgraduate curricula around the world. The book is useful for courses in dynamical systems and chaos, nonlinear dynamics, etc., for advanced undergraduate and postgraduate students in mathematics, physics and engineering.
An Introduction To Dynamical Systems
DOWNLOAD
Author : Rex Clark Robinson
language : en
Publisher: American Mathematical Soc.
Release Date : 2012
An Introduction To Dynamical Systems written by Rex Clark Robinson and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.
This book gives a mathematical treatment of the introduction to qualitative differential equations and discrete dynamical systems. The treatment includes theoretical proofs, methods of calculation, and applications. The two parts of the book, continuous time of differential equations and discrete time of dynamical systems, can be covered independently in one semester each or combined together into a year long course. The material on differential equations introduces the qualitative or geometric approach through a treatment of linear systems in any dimension. There follows chapters where equilibria are the most important feature, where scalar (energy) functions is the principal tool, where periodic orbits appear, and finally, chaotic systems of differential equations. The many different approaches are systematically introduced through examples and theorems. The material on discrete dynamical systems starts with maps of one variable and proceeds to systems in higher dimensions. The treatment starts with examples where the periodic points can be found explicitly and then introduces symbolic dynamics to analyze where they can be shown to exist but not given in explicit form. Chaotic systems are presented both mathematically and more computationally using Lyapunov exponents. With the one-dimensional maps as models, the multidimensional maps cover the same material in higher dimensions. This higher dimensional material is less computational and more conceptual and theoretical. The final chapter on fractals introduces various dimensions which is another computational tool for measuring the complexity of a system. It also treats iterated function systems which give examples of complicated sets. In the second edition of the book, much of the material has been rewritten to clarify the presentation. Also, some new material has been included in both parts of the book. This book can be used as a textbook for an advanced undergraduate course on ordinary differential equations and/or dynamical systems. Prerequisites are standard courses in calculus (single variable and multivariable), linear algebra, and introductory differential equations.
Discrete Dynamical Systems
DOWNLOAD
Author : Oded Galor
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-05-17
Discrete Dynamical Systems written by Oded Galor and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-17 with Business & Economics categories.
This book provides an introduction to discrete dynamical systems – a framework of analysis that is commonly used in the ?elds of biology, demography, ecology, economics, engineering, ?nance, and physics. The book characterizes the fundamental factors that govern the quantitative and qualitative trajectories of a variety of deterministic, discrete dynamical systems, providing solution methods for systems that can be solved analytically and methods of qualitative analysis for those systems that do not permit or necessitate an explicit solution. The analysis focuses initially on the characterization of the factors that govern the evolution of state variables in the elementary context of one-dimensional, ?rst-order, linear, autonomous systems. The f- damental insights about the forces that a?ect the evolution of these - ementary systems are subsequently generalized, and the determinants of the trajectories of multi-dimensional, nonlinear, higher-order, non- 1 autonomous dynamical systems are established. Chapter 1 focuses on the analysis of the evolution of state variables in one-dimensional, ?rst-order, autonomous systems. It introduces a method of solution for these systems, and it characterizes the traj- tory of a state variable, in relation to a steady-state equilibrium of the system, examining the local and global (asymptotic) stability of this steady-state equilibrium. The ?rst part of the chapter characterizes the factors that determine the existence, uniqueness and stability of a steady-state equilibrium in the elementary context of one-dimensional, ?rst-order, linear autonomous systems.