Nonparametric Statistical Methods Using R

DOWNLOAD
Download Nonparametric Statistical Methods Using R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nonparametric Statistical Methods Using R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Nonparametric Statistical Methods Using R
DOWNLOAD
Author : Graysen Cline
language : en
Publisher: Scientific e-Resources
Release Date : 2019-05-19
Nonparametric Statistical Methods Using R written by Graysen Cline and has been published by Scientific e-Resources this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-19 with categories.
Nonparametric Statistical Methods Using R covers customary nonparametric methods and rank-based examinations, including estimation and deduction for models running from straightforward area models to general direct and nonlinear models for uncorrelated and corresponded reactions. The creators underscore applications and measurable calculation. They represent the methods with numerous genuine and mimicked information cases utilizing R, including the bundles Rfit and npsm. The book initially gives a diagram of the R dialect and essential factual ideas previously examining nonparametrics. It presents rank-based methods for one-and two-example issues, strategies for relapse models, calculation for general settled impacts ANOVA and ANCOVA models, and time-to-occasion examinations. The last two parts cover further developed material, including high breakdown fits for general relapse models and rank-based surmising for bunch associated information. The book can be utilized as an essential content or supplement in a course on connected nonparametric or hearty strategies and as a source of perspective for scientists who need to execute nonparametric and rank-based methods by and by. Through various illustrations, it demonstrates to perusers proper methodologies to apply these methods utilizing R.
Nonparametric Statistical Methods Using R
DOWNLOAD
Author : John Kloke
language : en
Publisher: CRC Press
Release Date : 2024-05-20
Nonparametric Statistical Methods Using R written by John Kloke and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-20 with Mathematics categories.
Praise for the first edition: “This book would be especially good for the shelf of anyone who already knows nonparametrics, but wants a reference for how to apply those techniques in R.” -The American Statistician This thoroughly updated and expanded second edition of Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses. Two new chapters covering multivariate analyses and big data have been added. Core classical nonparametrics chapters on one- and two-sample problems have been expanded to include discussions on ties as well as power and sample size determination. Common machine learning topics --- including k-nearest neighbors and trees --- have also been included in this new edition. Key Features: Covers a wide range of models including location, linear regression, ANOVA-type, mixed models for cluster correlated data, nonlinear, and GEE-type. Includes robust methods for linear model analyses, big data, time-to-event analyses, timeseries, and multivariate. Numerous examples illustrate the methods and their computation. R packages are available for computation and datasets. Contains two completely new chapters on big data and multivariate analysis. The book is suitable for advanced undergraduate and graduate students in statistics and data science, and students of other majors with a solid background in statistical methods including regression and ANOVA. It will also be of use to researchers working with nonparametric and rank-based methods in practice.
Nonparametric Statistical Methods Using R
DOWNLOAD
Author : John Kloke
language : en
Publisher: CRC Press
Release Date : 2014-10-09
Nonparametric Statistical Methods Using R written by John Kloke and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-10-09 with Mathematics categories.
A Practical Guide to Implementing Nonparametric and Rank-Based ProceduresNonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The a
Nonparametric Statistical Methods Using R
DOWNLOAD
Author : Graysen Cline
language : en
Publisher:
Release Date : 2019
Nonparametric Statistical Methods Using R written by Graysen Cline and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Nonparametric statistics categories.
Applied Nonparametric Statistical Methods
DOWNLOAD
Author : Nigel Smeeton
language : en
Publisher: CRC Press
Release Date : 2025-03-31
Applied Nonparametric Statistical Methods written by Nigel Smeeton and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-31 with Mathematics categories.
Nonparametric statistical methods minimize the number of assumptions that need to be made about the distribution of data being analysed, unlike classical parametric methods. As such, they are an essential part of a statistician’s armoury, and this book is an essential resource in their application. Starting from the basics of statistics, it takes the reader through the main nonparametric approaches with an emphasis on carefully explained examples backed up by use of the R programming language. Key features of this fully revised and extended fifth edition include the following: An introductory chapter that provides a gentle introduction to the basics of statistics, including types of data, hypothesis testing, confidence intervals and ethical issues An R package containing functions that have been written for the examples in the text and the exercises Summary bullet points at the end of each section to enable the reader to locate important principles quickly A case study from medical research to demonstrate nonparametric approaches to the data analysis Examples fully integrated into the text, drawn from published research on contemporary issues, with more detail given in their explanation Extensive exercises along with complete solutions that allow the reader to test their understanding of the material Articles used in the examples and exercises carefully chosen to enable readers to identify up-to-date literature in their field for research, publications and teaching material Numerous historical references throughout the text, from which to explore the origins of nonparametric methods Applied Nonparametric Statistical Methods, Fifth Edition, is a comprehensive course text in nonparametric techniques suitable for undergraduate students of mathematics and statistics. It assumes only basic previous experience of statistics, and with algebra kept to a minimum, it is also ideal for quantitative methods modules delivered to undergraduate or postgraduate students in science, business and health service training. It is an invaluable resource for researchers, medical practitioners, business managers, research and development staff, and others needing to interpret quantitative information. Suitable for self-directed learning in continuing professional development, it also acts as a handy accessible reference manual.
Applied Nonparametric Statistical Methods
DOWNLOAD
Author : Peter Sprent
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Applied Nonparametric Statistical Methods written by Peter Sprent and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Social Science categories.
This book is a practical introduction to statistical techniques called nonpara metric methods. Using examples, we explain assumptions and demonstrate procedures; theory is kept to a minimum. We show how basic problems are tackled and try to clear up common misapprehensions so as to help both students of statistics meeting the methods for the first time and workers in other fields faced with data needing simple but informative analysis. An analogy between experimenters and car drivers describes our aim. Statistical analyses may be done by following a set of rules without understanding their logical basis, but this has dangers. It is like driving a car with no inkling ofhow the internal combustion engine, the gears, the ignition system, the brakes actually work. Understanding the rudiments helps one get better performance and makesdrivingsafer;appropriate gearchanges become a way to reduce engine stress, prolong engine life, improve fuel economy, minimize wear on brake linings. Knowing how to change the engine oil or replace worn sparking plugs is notessential for adriver, but it will reduce costs. Learning such basics will not make one a fully fledged mechanic, even less an automotive engineer; but it all contributes to more economical and safer driving, alertingone to the dangers ofbald tyres, aleakingexhaust, worn brake linings.
Nonparametric Statistical Methods
DOWNLOAD
Author : Myles Hollander
language : en
Publisher: John Wiley & Sons
Release Date : 2013-11-25
Nonparametric Statistical Methods written by Myles Hollander and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-25 with Mathematics categories.
Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.
Nonparametric Statistical Methods And Related Topics
DOWNLOAD
Author : Francisco J. Samaniego
language : en
Publisher: World Scientific
Release Date : 2011
Nonparametric Statistical Methods And Related Topics written by Francisco J. Samaniego and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Mathematics categories.
Review papers. 1. On the scholarly work of P.K. Bhattacharya / P. Hall and F.J. Samaniego. 2. The propensity score and its role in causal inference / C. Drake and T. Loux. 3. Recent tests for symmetry with multivariate and structured data: a review / S.G. Meintanis and J. Ngatchou-Wandji -- Papers on general nonparametric inference. 4. On robust versions of classical tests with dependent data / J. Jiang. 5. Density estimation by sampling from stationary continuous time parameter associated processes / G.G. Roussas and D. Bhattacharya. 6. A Short proof of the Feigin-Tweedie theorem on the existence of the mean functional of a Dirichlet process / J. Sethuraman. 7. Max-min Bernstein polynomial estimation of a discontinuity in distribution / K.-S. Song. 8. U-statistics based on higher-order spacings / D.D. Tung and S.R. Jammalamadaka. 9. Nonparametric models for non-Gaussian longitudinal data / N. Zhang, H.-G. Muller and J.-L. Wang -- Papers on aspects of linear or generalized linear models. 10. Better residuals / R. Beran. 11. The use of Peters-Belson regression in legal cases / E. Bura, J.L. Gastwirth and H. Hikawa. 12. On a hybrid approach to parametric and nonparametric regression / P. Burman and P. Chaudhuri. 13. Nonparametric regression models with integrated covariates / Z. Cai. 14. A dynamic test for misspecification of a linear model / M.P. McAssey and F. Hsieh. 15. The principal component decomposition of the basic martingale / W. Stute -- Papers on time series analysis. 16. Fast scatterplot smoothing using blockwise least squares fitting / A. Aue and T.C.M. Lee. 17. Some recent advances in semiparametric estimation of the GARCH model / J. Di and A. Gangopadhyay. 18. Extreme dependence in multivariate time series: a review / R. Sen and Z. Tan. 19. Dynamic mixed models for irregularly observed water quality data / R.H. Shumway -- Papers on asymptotic theory. 20. Asymptotic behavior of the kernel density estimators for nonstationary dependent random variables with binned data / J.-F. Lenain, M. Harel and M.L. Puri. 21. Convergence rates of an improved isotonic regression estimator / H. Mukerjee. 22. Asymptotic distribution of the smallest eigenvalue of Wishart(N, n) When N, n ' [symbol] such that N/n --> 0 / D. Paul
Robust Nonparametric Statistical Methods
DOWNLOAD
Author : Thomas P. Hettmansperger
language : en
Publisher: CRC Press
Release Date : 2010-12-20
Robust Nonparametric Statistical Methods written by Thomas P. Hettmansperger and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-12-20 with Mathematics categories.
Presenting an extensive set of tools and methods for data analysis, Robust Nonparametric Statistical Methods, Second Edition covers univariate tests and estimates with extensions to linear models, multivariate models, times series models, experimental designs, and mixed models. It follows the approach of the first edition by developing rank-based m
An Introduction To Nonparametric Statistics
DOWNLOAD
Author : John E. Kolassa
language : en
Publisher: CRC Press
Release Date : 2020-09-29
An Introduction To Nonparametric Statistics written by John E. Kolassa and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-29 with Mathematics categories.
This textbook presents techniques for statistical analysis in the absence of strong assumptions about the distributions generating the data. Rank-based and resampling techniques are heavily represented, but robust techniques are considered as well. These techniques include one-sample testing and estimation, multi-sample testing and estimation, and regression. Attention is payed to the intellectual development of the field, with a thorough review of bibliographical references. Computational tools, in R and SAS, are developed and illustrated via examples. Exercises designed to reinforce examples are included. Important techniques covered include Rank-based techniques, including sign, Kruskal-Wallis, Friedman, Mann-Whitney and Wilcoxon tests, are presented. Tests are inverted to produce estimates and confidence intervals. Multivariate tests are explored. Techniques reflecting the dependence of a response variable on explanatory variables are presented. Density estimation is explored. The bootstrap and jackknife are discussed. This text is intended for a graduate student in applied statistics. The course is best taken after an introductory course in statistical methodology, a course in elementary probability, and a course in regression. Mathematical prerequisites include calculus through multivariate differentiation and integration, and, ideally, a course in matrix algebra.