Norm Derivatives And Characterizations Of Inner Product Spaces

DOWNLOAD
Download Norm Derivatives And Characterizations Of Inner Product Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Norm Derivatives And Characterizations Of Inner Product Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Norm Derivatives And Characterizations Of Inner Product Spaces
DOWNLOAD
Author : Claudi Alsina
language : en
Publisher: World Scientific
Release Date : 2010
Norm Derivatives And Characterizations Of Inner Product Spaces written by Claudi Alsina and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Mathematics categories.
1. Introduction. 1.1. Historical notes. 1.2. Normed linear spaces. 1.3. Strictly convex normed linear spaces. 1.4. Inner product spaces. 1.5. Orthogonalities in normed linear spaces -- 2. Norm derivatives. 2.1. Norm derivatives : Definition and basic properties. 2.2. Orthogonality relations based on norm derivatives. 2.3. p'[symbol]-orthogonal transformations. 2.4. On the equivalence of two norm derivatives. 2.5. Norm derivatives and projections in normed linear spaces. 2.6. Norm derivatives and Lagrange's identity in normed linear spaces. 2.7. On some extensions of the norm derivatives. 2.8. p-orthogonal additivity -- 3. Norm derivatives and heights. 3.1. Definition and basic properties. 3.2. Characterizations of inner product spaces involving geometrical properties of a height in a triangle. 3.3. Height functions and classical orthogonalities. 3.4. A new orthogonality relation. 3.5. Orthocenters. 3.6. A characterization of inner product spaces involving an isosceles trapezoid property. 3.7. Functional equations of the height transform -- 4. Perpendicular bisectors in Normed spaces. 4.1. Definitions and basic properties. 4.2. A new orthogonality relation. 4.3. Relations between perpendicular bisectors and classical orthogonalities. 4.4. On the radius of the circumscribed circumference of a triangle. 4.5. Circumcenters in a triangle. 4.6. Euler line in real normed space. 4.7. Functional equation of the perpendicular bisector transform -- 5. Bisectrices in real Normed spaces. 5.1. Bisectrices in real normed spaces. 5.2. A new orthogonality relation. 5.3. Functional equation of the bisectrix transform. 5.4. Generalized bisectrices in strictly convex real normed spaces. 5.5. Incenters and generalized bisectrices -- 6. Areas of triangles in Normed spaces. 6.1. Definition of four areas of triangles. 6.2. Classical properties of the areas and characterizations of inner product spaces. 6.3. Equalities between different area functions. 6.4. The area orthogonality.
Norm Derivatives And Characterizations Of Inner Product Spaces
DOWNLOAD
Author : Claudi Alsina
language : en
Publisher: World Scientific
Release Date : 2010
Norm Derivatives And Characterizations Of Inner Product Spaces written by Claudi Alsina and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Mathematics categories.
The book provides a comprehensive overview of the characterizations of real normed spaces as inner product spaces based on norm derivatives and generalizations of the most basic geometrical properties of triangles in normed spaces. Since the appearance of Jordanvon Neumann's classical theorem (The Parallelogram Law) in 1935, the field of characterizations of inner product spaces has received a significant amount of attention in various literature texts. Moreover, the techniques arising in the theory of functional equations have shown to be extremely useful in solving key problems in the characterizations of Banach spaces as Hilbert spaces. This book presents, in a clear and detailed style, state-of-the-art methods of characterizing inner product spaces by means of norm derivatives. It brings together results that have been scattered in various publications over the last two decades and includes more new material and techniques for solving functional equations in normed spaces. Thus the book can serve as an advanced undergraduate or graduate text as well as a resource book for researchers working in geometry of Banach (Hilbert) spaces or in the theory of functional equations (and their applications).
Characterizations Of Inner Product Spaces
DOWNLOAD
Author : Amir
language : en
Publisher: Birkhäuser
Release Date : 2013-11-21
Characterizations Of Inner Product Spaces written by Amir and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-21 with Social Science categories.
Every mathematician working in Banaeh spaee geometry or Approximation theory knows, from his own experienee, that most "natural" geometrie properties may faH to hold in a generalnormed spaee unless the spaee is an inner produet spaee. To reeall the weIl known definitions, this means IIx 11 = *, where is an inner (or: scalar) product on E, Le. a function from ExE to the underlying (real or eomplex) field satisfying: (i) O for x o. (ii) is linear in x. (iii) = (intherealease, thisisjust =
Ulam Type Stability
DOWNLOAD
Author : Janusz Brzdęk
language : en
Publisher: Springer Nature
Release Date : 2019-10-29
Ulam Type Stability written by Janusz Brzdęk and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-29 with Mathematics categories.
This book is an outcome of two Conferences on Ulam Type Stability (CUTS) organized in 2016 (July 4-9, Cluj-Napoca, Romania) and in 2018 (October 8-13, 2018, Timisoara, Romania). It presents up-to-date insightful perspective and very resent research results on Ulam type stability of various classes of linear and nonlinear operators; in particular on the stability of many functional equations in a single and several variables (also in the lattice environments, Orlicz spaces, quasi-b-Banach spaces, and 2-Banach spaces) and some orthogonality relations (e.g., of Birkhoff–James). A variety of approaches are presented, but a particular emphasis is given to that of fixed points, with some new fixed point results and their applications provided. Besides these several other topics are considered that are somehow related to the Ulam stability such as: invariant means, geometry of Banach function modules, queueing systems, semi-inner products and parapreseminorms, subdominant eigenvalue location of a bordered diagonal matrix and optimal forward contract design for inventory. New directions and several open problems regarding stability and non-stability concepts are included. Ideal for use as a reference or in a seminar, this book is aimed toward graduate students, scientists and engineers working in functional equations, difference equations, operator theory, functional analysis, approximation theory, optimization theory, and fixed point theory who wish to be introduced to a wide spectrum of relevant theories, methods and applications leading to interdisciplinary research. It advances the possibilities for future research through an extensive bibliography and a large spectrum of techniques, methods and applications.
Operator And Norm Inequalities And Related Topics
DOWNLOAD
Author : Richard M. Aron
language : en
Publisher: Springer Nature
Release Date : 2022-08-10
Operator And Norm Inequalities And Related Topics written by Richard M. Aron and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-10 with Mathematics categories.
Inequalities play a central role in mathematics with various applications in other disciplines. The main goal of this contributed volume is to present several important matrix, operator, and norm inequalities in a systematic and self-contained fashion. Some powerful methods are used to provide significant mathematical inequalities in functional analysis, operator theory and numerous fields in recent decades. Some chapters are devoted to giving a series of new characterizations of operator monotone functions and some others explore inequalities connected to log-majorization, relative operator entropy, and the Ando-Hiai inequality. Several chapters are focused on Birkhoff–James orthogonality and approximate orthogonality in Banach spaces and operator algebras such as C*-algebras from historical perspectives to current development. A comprehensive account of the boundedness, compactness, and restrictions of Toeplitz operators can be found in the book. Furthermore, an overview of the Bishop-Phelps-Bollobás theorem is provided. The state-of-the-art of Hardy-Littlewood inequalities in sequence spaces is given. The chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.
Surveys In Geometry I
DOWNLOAD
Author : Athanase Papadopoulos
language : en
Publisher: Springer Nature
Release Date : 2022-02-18
Surveys In Geometry I written by Athanase Papadopoulos and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-18 with Mathematics categories.
The volume consists of a set of surveys on geometry in the broad sense. The goal is to present a certain number of research topics in a non-technical and appealing manner. The topics surveyed include spherical geometry, the geometry of finite-dimensional normed spaces, metric geometry (Bishop—Gromov type inequalities in Gromov-hyperbolic spaces), convexity theory and inequalities involving volumes and mixed volumes of convex bodies, 4-dimensional topology, Teichmüller spaces and mapping class groups actions, translation surfaces and their dynamics, and complex higher-dimensional geometry. Several chapters are based on lectures given by their authors to middle-advanced level students and young researchers. The whole book is intended to be an introduction to current research trends in geometry.
Functional Equations In Mathematical Analysis
DOWNLOAD
Author : Themistocles M. Rassias
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-09-18
Functional Equations In Mathematical Analysis written by Themistocles M. Rassias and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-18 with Mathematics categories.
The stability problem for approximate homomorphisms, or the Ulam stability problem, was posed by S. M. Ulam in the year 1941. The solution of this problem for various classes of equations is an expanding area of research. In particular, the pursuit of solutions to the Hyers-Ulam and Hyers-Ulam-Rassias stability problems for sets of functional equations and ineqalities has led to an outpouring of recent research. This volume, dedicated to S. M. Ulam, presents the most recent results on the solution to Ulam stability problems for various classes of functional equations and inequalities. Comprised of invited contributions from notable researchers and experts, this volume presents several important types of functional equations and inequalities and their applications to problems in mathematical analysis, geometry, physics and applied mathematics. "Functional Equations in Mathematical Analysis" is intended for researchers and students in mathematics, physics, and other computational and applied sciences.
Functional Equations On Groups
DOWNLOAD
Author : Henrik Stetkaer
language : en
Publisher: World Scientific
Release Date : 2013-07-15
Functional Equations On Groups written by Henrik Stetkaer and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-15 with Mathematics categories.
This volume provides an accessible and coherent introduction to some of the scientific progress on functional equations on groups in the last two decades. It presents the latest methods of treating the topic and contains new and transparent proofs. Its scope extends from the classical functional equations on the real line to those on groups, in particular, non-abelian groups. This volume presents, in careful detail, a number of illustrative examples like the cosine equation on the Heisenberg group and on the group SL(2, ℝ). Some of the examples are not even seen in existing monographs. Thus, it is an essential source of reference for further investigations.
Geometry Of Linear 2 Normed Spaces
DOWNLOAD
Author : Raymond W. Freese
language : en
Publisher: Nova Publishers
Release Date : 2001
Geometry Of Linear 2 Normed Spaces written by Raymond W. Freese and has been published by Nova Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.
Convexity From The Geometric Point Of View
DOWNLOAD
Author : Vitor Balestro
language : en
Publisher: Springer Nature
Release Date : 2024-07-14
Convexity From The Geometric Point Of View written by Vitor Balestro and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-14 with Mathematics categories.
This text gives a comprehensive introduction to the “common core” of convex geometry. Basic concepts and tools which are present in all branches of that field are presented with a highly didactic approach. Mainly directed to graduate and advanced undergraduates, the book is self-contained in such a way that it can be read by anyone who has standard undergraduate knowledge of analysis and of linear algebra. Additionally, it can be used as a single reference for a complete introduction to convex geometry, and the content coverage is sufficiently broad that the reader may gain a glimpse of the entire breadth of the field and various subfields. The book is suitable as a primary text for courses in convex geometry and also in discrete geometry (including polytopes). It is also appropriate for survey type courses in Banach space theory, convex analysis, differential geometry, and applications of measure theory. Solutions to all exercises are available to instructors who adopt the text for coursework. Most chapters use the same structure with the first part presenting theory and the next containing a healthy range of exercises. Some of the exercises may even be considered as short introductions to ideas which are not covered in the theory portion. Each chapter has a notes section offering a rich narrative to accompany the theory, illuminating the development of ideas, and providing overviews to the literature concerning the covered topics. In most cases, these notes bring the reader to the research front. The text includes many figures that illustrate concepts and some parts of the proofs, enabling the reader to have a better understanding of the geometric meaning of the ideas. An appendix containing basic (and geometric) measure theory collects useful information for convex geometers.