Numerical Continuation Methods

DOWNLOAD
Download Numerical Continuation Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Continuation Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Introduction To Numerical Continuation Methods
DOWNLOAD
Author : Eugene L. Allgower
language : en
Publisher: SIAM
Release Date : 2003-01-01
Introduction To Numerical Continuation Methods written by Eugene L. Allgower and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-01-01 with Mathematics categories.
Numerical continuation methods have provided important contributions toward the numerical solution of nonlinear systems of equations for many years. The methods may be used not only to compute solutions, which might otherwise be hard to obtain, but also to gain insight into qualitative properties of the solutions. Introduction to Numerical Continuation Methods, originally published in 1979, was the first book to provide easy access to the numerical aspects of predictor corrector continuation and piecewise linear continuation methods. Not only do these seemingly distinct methods share many common features and general principles, they can be numerically implemented in similar ways. The book also features the piecewise linear approximation of implicitly defined surfaces, the algorithms of which are frequently used in computer graphics, mesh generation, and the evaluation of surface integrals. To help potential users of numerical continuation methods create programs adapted to their particular needs, this book presents pseudo-codes and Fortran codes as illustrations. Since it first appeared, many specialized packages for treating such varied problems as bifurcation, polynomial systems, eigenvalues, economic equilibria, optimization, and the approximation of manifolds have been written. The original extensive bibliography has been updated in the SIAM Classics edition to include more recent references and several URLs so users can look for codes to suit their needs. Audience: this book continues to be useful for researchers and graduate students in mathematics, sciences, engineering, economics, and business. A background in elementary analysis and linear algebra are adequate prerequisites for reading this book; some knowledge from a first course in numerical analysis may also be helpful.
Numerical Continuation Methods
DOWNLOAD
Author : Eugene L. Allgower
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Numerical Continuation Methods written by Eugene L. Allgower and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.
Numerical Continuation Methods For Dynamical Systems
DOWNLOAD
Author : Bernd Krauskopf
language : en
Publisher: Springer
Release Date : 2007-11-06
Numerical Continuation Methods For Dynamical Systems written by Bernd Krauskopf and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-06 with Science categories.
Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.
Numerical Continuation Methods For Non Linear Equations And Bifurcation Problems
DOWNLOAD
Author : James P. Abbott
language : en
Publisher:
Release Date : 1977
Numerical Continuation Methods For Non Linear Equations And Bifurcation Problems written by James P. Abbott and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1977 with Equations categories.
Numerical Continuation Methods For Dynamical Systems
DOWNLOAD
Author : Bernd Krauskopf
language : en
Publisher: Springer
Release Date : 2007-07-26
Numerical Continuation Methods For Dynamical Systems written by Bernd Krauskopf and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-26 with Science categories.
Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.
Numerical Methods For Bifurcations Of Dynamical Equilibria
DOWNLOAD
Author : Willy J. F. Govaerts
language : en
Publisher: SIAM
Release Date : 2000-01-01
Numerical Methods For Bifurcations Of Dynamical Equilibria written by Willy J. F. Govaerts and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-01-01 with Mathematics categories.
Dynamical systems arise in all fields of applied mathematics. The author focuses on the description of numerical methods for the detection, computation, and continuation of equilibria and bifurcation points of equilibria of dynamical systems. This subfield has the particular attraction of having links with the geometric theory of differential equations, numerical analysis, and linear algebra.
Numerical Continuation And Bifurcation In Nonlinear Pdes
DOWNLOAD
Author : Hannes Uecker
language : en
Publisher: SIAM
Release Date : 2021-08-19
Numerical Continuation And Bifurcation In Nonlinear Pdes written by Hannes Uecker and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-19 with Mathematics categories.
This book provides a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs in 1D, 2D, and 3D. Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. After a concise review of some analytical background and numerical methods, the author explains the free MATLAB package pde2path by using a large variety of examples with demo codes that can be easily adapted to the reader's given problem. Numerical Continuation and Bifurcation in Nonlinear PDEs will appeal to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It can be used as a supplemental text in courses on nonlinear PDEs and modeling and bifurcation.
Numerical Continuation Methods For Finite Element Applications
DOWNLOAD
Author : Werner C. Rheinboldt
language : en
Publisher:
Release Date : 1976
Numerical Continuation Methods For Finite Element Applications written by Werner C. Rheinboldt and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1976 with categories.
Numerical Bifurcation Analysis For Reaction Diffusion Equations
DOWNLOAD
Author : Zhen Mei
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Numerical Bifurcation Analysis For Reaction Diffusion Equations written by Zhen Mei and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
Reaction-diffusion equations are typical mathematical models in biology, chemistry and physics. These equations often depend on various parame ters, e. g. temperature, catalyst and diffusion rate, etc. Moreover, they form normally a nonlinear dissipative system, coupled by reaction among differ ent substances. The number and stability of solutions of a reaction-diffusion system may change abruptly with variation of the control parameters. Cor respondingly we see formation of patterns in the system, for example, an onset of convection and waves in the chemical reactions. This kind of phe nomena is called bifurcation. Nonlinearity in the system makes bifurcation take place constantly in reaction-diffusion processes. Bifurcation in turn in duces uncertainty in outcome of reactions. Thus analyzing bifurcations is essential for understanding mechanism of pattern formation and nonlinear dynamics of a reaction-diffusion process. However, an analytical bifurcation analysis is possible only for exceptional cases. This book is devoted to nu merical analysis of bifurcation problems in reaction-diffusion equations. The aim is to pursue a systematic investigation of generic bifurcations and mode interactions of a dass of reaction-diffusion equations. This is realized with a combination of three mathematical approaches: numerical methods for con tinuation of solution curves and for detection and computation of bifurcation points; effective low dimensional modeling of bifurcation scenario and long time dynamics of reaction-diffusion equations; analysis of bifurcation sce nario, mode-interactions and impact of boundary conditions.
Numerical Continuation Methods For Slow Fast Dynamical Systems
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2009
Numerical Continuation Methods For Slow Fast Dynamical Systems written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with categories.