On Line Learning In Neural Networks

DOWNLOAD
Download On Line Learning In Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get On Line Learning In Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
On Line Learning In Neural Networks
DOWNLOAD
Author : David Saad
language : en
Publisher: Cambridge University Press
Release Date : 1999-01-28
On Line Learning In Neural Networks written by David Saad and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-01-28 with Computers categories.
On-line learning is one of the most commonly used techniques for training neural networks. Though it has been used successfully in many real-world applications, most training methods are based on heuristic observations. The lack of theoretical support damages the credibility as well as the efficiency of neural networks training, making it hard to choose reliable or optimal methods. This book presents a coherent picture of the state of the art in the theoretical analysis of on-line learning. An introduction relates the subject to other developments in neural networks and explains the overall picture. Surveys by leading experts in the field combine new and established material and enable nonexperts to learn more about the techniques and methods used. This book, the first in the area, provides a comprehensive view of the subject and will be welcomed by mathematicians, scientists and engineers, both in industry and academia.
Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29
Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10
Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Strengthening Deep Neural Networks
DOWNLOAD
Author : Katy Warr
language : en
Publisher: O'Reilly Media
Release Date : 2019-07-03
Strengthening Deep Neural Networks written by Katy Warr and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-03 with Computers categories.
As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process image, audio, and video data. Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If you’re a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone fascinated by the differences between artificial and biological perception, this book is for you. Delve into DNNs and discover how they could be tricked by adversarial input Investigate methods used to generate adversarial input capable of fooling DNNs Explore real-world scenarios and model the adversarial threat Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data Examine some ways in which AI might become better at mimicking human perception in years to come
Machine Learning With Neural Networks
DOWNLOAD
Author : Bernhard Mehlig
language : en
Publisher: Cambridge University Press
Release Date : 2021-10-28
Machine Learning With Neural Networks written by Bernhard Mehlig and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-28 with Science categories.
This modern and self-contained book offers a clear and accessible introduction to the important topic of machine learning with neural networks. In addition to describing the mathematical principles of the topic, and its historical evolution, strong connections are drawn with underlying methods from statistical physics and current applications within science and engineering. Closely based around a well-established undergraduate course, this pedagogical text provides a solid understanding of the key aspects of modern machine learning with artificial neural networks, for students in physics, mathematics, and engineering. Numerous exercises expand and reinforce key concepts within the book and allow students to hone their programming skills. Frequent references to current research develop a detailed perspective on the state-of-the-art in machine learning research.
Neural Networks Tricks Of The Trade
DOWNLOAD
Author : Grégoire Montavon
language : en
Publisher: Springer
Release Date : 2012-11-14
Neural Networks Tricks Of The Trade written by Grégoire Montavon and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-14 with Computers categories.
The twenty last years have been marked by an increase in available data and computing power. In parallel to this trend, the focus of neural network research and the practice of training neural networks has undergone a number of important changes, for example, use of deep learning machines. The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.
Developments Of Artificial Intelligence Technologies In Computation And Robotics Proceedings Of The 14th International Flins Conference Flins 2020
DOWNLOAD
Author : Zhong Li
language : en
Publisher: World Scientific
Release Date : 2020-08-04
Developments Of Artificial Intelligence Technologies In Computation And Robotics Proceedings Of The 14th International Flins Conference Flins 2020 written by Zhong Li and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-04 with Technology & Engineering categories.
FLINS, an acronym introduced in 1994 and originally for Fuzzy Logic and Intelligent Technologies in Nuclear Science, is now extended into a well-established international research forum to advance the foundations and applications of computational intelligence for applied research in general and for complex engineering and decision support systems.The principal mission of FLINS is bridging the gap between machine intelligence and real complex systems via joint research between universities and international research institutions, encouraging interdisciplinary research and bringing multidiscipline researchers together.FLINS 2020 is the fourteenth in a series of conferences on computational intelligence systems.
Large Scale Kernel Machines
DOWNLOAD
Author : Léon Bottou
language : en
Publisher: MIT Press
Release Date : 2007
Large Scale Kernel Machines written by Léon Bottou and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Computers categories.
Solutions for learning from large scale datasets, including kernel learning algorithms that scale linearly with the volume of the data and experiments carried out on realistically large datasets. Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to outperform algorithms that simply process a random subset of the data. This volume offers researchers and engineers practical solutions for learning from large scale datasets, with detailed descriptions of algorithms and experiments carried out on realistically large datasets. At the same time it offers researchers information that can address the relative lack of theoretical grounding for many useful algorithms. After a detailed description of state-of-the-art support vector machine technology, an introduction of the essential concepts discussed in the volume, and a comparison of primal and dual optimization techniques, the book progresses from well-understood techniques to more novel and controversial approaches. Many contributors have made their code and data available online for further experimentation. Topics covered include fast implementations of known algorithms, approximations that are amenable to theoretical guarantees, and algorithms that perform well in practice but are difficult to analyze theoretically. Contributors Léon Bottou, Yoshua Bengio, Stéphane Canu, Eric Cosatto, Olivier Chapelle, Ronan Collobert, Dennis DeCoste, Ramani Duraiswami, Igor Durdanovic, Hans-Peter Graf, Arthur Gretton, Patrick Haffner, Stefanie Jegelka, Stephan Kanthak, S. Sathiya Keerthi, Yann LeCun, Chih-Jen Lin, Gaëlle Loosli, Joaquin Quiñonero-Candela, Carl Edward Rasmussen, Gunnar Rätsch, Vikas Chandrakant Raykar, Konrad Rieck, Vikas Sindhwani, Fabian Sinz, Sören Sonnenburg, Jason Weston, Christopher K. I. Williams, Elad Yom-Tov
Multivariate Statistical Machine Learning Methods For Genomic Prediction
DOWNLOAD
Author : Osval Antonio Montesinos López
language : en
Publisher: Springer Nature
Release Date : 2022-02-14
Multivariate Statistical Machine Learning Methods For Genomic Prediction written by Osval Antonio Montesinos López and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-14 with Technology & Engineering categories.
This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
Fuzzy Intelligent Systems
DOWNLOAD
Author : E. Chandrasekaran
language : en
Publisher: John Wiley & Sons
Release Date : 2021-09-08
Fuzzy Intelligent Systems written by E. Chandrasekaran and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-08 with Computers categories.
FUZZY INTELLIGENT SYSTEMS A comprehensive guide to Expert Systems and Fuzzy Logic that is the backbone of artificial intelligence. The objective in writing the book is to foster advancements in the field and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and those in education and research covering a broad cross section of technical disciplines. Fuzzy Intelligent Systems: Methodologies, Techniques, and Applications comprises state-of-the-art chapters detailing how expert systems are built and how the fuzzy logic resembling human reasoning, powers them. Engineers, both current and future, need systematic training in the analytic theory and rigorous design of fuzzy control systems to keep up with and advance the rapidly evolving field of applied control technologies. As a consequence, expert systems with fuzzy logic capabilities make for a more versatile and innovative handling of problems. This book showcases the combination of fuzzy logic and neural networks known as a neuro-fuzzy system, which results in a hybrid intelligent system by combining a human-like reasoning style of neural networks. Audience Researchers and students in computer science, Internet of Things, artificial intelligence, machine learning, big data analytics and information and communication technology-related fields. Students will gain a thorough understanding of fuzzy control systems theory by mastering its contents.