[PDF] Optimization Algorithms In Machine Learning - eBooks Review

Optimization Algorithms In Machine Learning


Optimization Algorithms In Machine Learning
DOWNLOAD

Download Optimization Algorithms In Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Optimization Algorithms In Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Optimization Algorithms In Machine Learning


Optimization Algorithms In Machine Learning
DOWNLOAD
Author : Debashish Das
language : en
Publisher: Springer Nature
Release Date : 2025-05-20

Optimization Algorithms In Machine Learning written by Debashish Das and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-20 with Computers categories.


This book explores the development of several new learning algorithms that utilize recent optimization techniques and meta-heuristics. It addresses well-known models such as particle swarm optimization, genetic algorithm, ant colony optimization, evolutionary strategy, population-based incremental learning, and grey wolf optimizer for training neural networks. Additionally, the book examines the challenges associated with these processes in detail. This volume will serve as a valuable reference for individuals in both academia and industry.



First Order And Stochastic Optimization Methods For Machine Learning


First Order And Stochastic Optimization Methods For Machine Learning
DOWNLOAD
Author : Guanghui Lan
language : en
Publisher: Springer Nature
Release Date : 2020-05-15

First Order And Stochastic Optimization Methods For Machine Learning written by Guanghui Lan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-15 with Mathematics categories.


This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.



Integrative Machine Learning And Optimization Algorithms For Disease Prediction


Integrative Machine Learning And Optimization Algorithms For Disease Prediction
DOWNLOAD
Author : Muniasamy, Anandhavalli
language : en
Publisher: IGI Global
Release Date : 2025-07-03

Integrative Machine Learning And Optimization Algorithms For Disease Prediction written by Muniasamy, Anandhavalli and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-03 with Medical categories.


Integrative approaches that combine machine learning (ML) and optimization algorithms rapidly transform the landscape of disease prediction and healthcare analytics. By leveraging the predictive power of ML models alongside the efficiency of optimization techniques, researchers can develop more accurate, robust, and scalable systems for early diagnosis and risk assessment. These hybrid frameworks enable the integration of diverse data sources into cohesive predictive models. The synergy between ML and optimization enhances model performance while supporting personalized medicine by tailoring predictions to individual patient profiles. Integrative methodologies hold significant promises for advancing clinical decision-making and improving health outcomes. Integrative Machine Learning and Optimization Algorithms for Disease Prediction explores the cutting-edge applications of machine learning, deep learning, and optimization algorithms in disease prediction. It examines how diverse machine learning models, from traditional algorithms to deep learning and ensemble methods, can be optimized for high-stakes clinical predictions. This book covers topics such as disease prediction, healthcare data, and mental health, and is a useful resource for computer engineers, medical professionals, academicians, researchers, and scientists.



The Hitchhiker S Guide To Machine Learning Algorithms


The Hitchhiker S Guide To Machine Learning Algorithms
DOWNLOAD
Author : Devin Schumacher
language : en
Publisher: SERP Media
Release Date : 2023-07-26

The Hitchhiker S Guide To Machine Learning Algorithms written by Devin Schumacher and has been published by SERP Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-26 with Computers categories.


Hello humans & welcome to the world of machines! Specifically, machine learning & algorithms. We are about to embark on an exciting adventure through the vast and varied landscape of algorithms that power the cutting-edge field of artificial intelligence. Machine learning is changing the world as we know it. From predicting stock market trends and diagnosing diseases to powering the virtual assistants in our smartphones and enabling self-driving cars, and picking up the slack on your online dating conversations. What makes this book unique is its structure and depth. With 100 chapters, each dedicated to a different machine learning concept, this book is designed to be your ultimate guide to the world of machine learning algorithms. Whether you are a student, a data science professional, or someone curious about machine learning, this book aims to provide a comprehensive overview that is both accessible and in-depth. The algorithms covered in this book span various categories including: Classification & Regression: Learn about algorithms like Decision Trees, Random Forests, Support Vector Machines, and Logistic Regression which are used to classify data or predict numerical values. Clustering: Discover algorithms like k-Means, Hierarchical Clustering, and DBSCAN that group data points together based on similarities. Neural Networks & Deep Learning: Dive into algorithms and architectures like Perceptrons, Convolutional Neural Networks (CNN), and Long Short-Term Memory Networks (LSTM). Optimization: Understand algorithms like Gradient Descent, Genetic Algorithms, and Particle Swarm Optimization which find the best possible solutions in different scenarios. Ensemble Methods: Explore algorithms like AdaBoost, Gradient Boosting, and Random Forests which combine the predictions of multiple models for improved accuracy. Dimensionality Reduction: Learn about algorithms like Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) which reduce the number of features in a dataset while retaining important information. Reinforcement Learning: Get to know algorithms like Q-learning, Deep Q-Network (DQN), and Monte Carlo Tree Search which are used in systems that learn from their environment. Each chapter is designed as a standalone introduction to its respective algorithm. This means you can start from any chapter that catches your interest or proceed sequentially. Along with the theory, practical examples, applications, and insights into how these algorithms work under the hood are provided. This book is not just an academic endeavor but a bridge that connects theory with practical real-world applications. It's an invitation to explore, learn, and harness the power of algorithms to solve complex problems and make informed decisions. Fasten your seat belts as we dive into the mesmerizing world of machine learning algorithms. Whether you are looking to expand your knowledge, seeking inspiration, or in pursuit of technical mastery, this book should sit on your coffee table and make you look intelligent in front of all invited (and uninvited) guests.



Optimization For Machine Learning


Optimization For Machine Learning
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2021-09-22

Optimization For Machine Learning written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-22 with Computers categories.


Optimization happens everywhere. Machine learning is one example of such and gradient descent is probably the most famous algorithm for performing optimization. Optimization means to find the best value of some function or model. That can be the maximum or the minimum according to some metric. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will learn how to find the optimum point to numerical functions confidently using modern optimization algorithms.



Optimization In Machine Learning And Applications


Optimization In Machine Learning And Applications
DOWNLOAD
Author : Anand J. Kulkarni
language : en
Publisher: Springer Nature
Release Date : 2019-11-29

Optimization In Machine Learning And Applications written by Anand J. Kulkarni and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-29 with Technology & Engineering categories.


This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making. The book also presents formulations of real-world machine learning problems, and discusses AI solution methodologies as standalone or hybrid approaches. Lastly, it proposes novel metaheuristic methods to solve complex machine learning problems. Featuring valuable insights, the book helps readers explore new avenues leading toward multidisciplinary research discussions.



Accelerated Optimization For Machine Learning


Accelerated Optimization For Machine Learning
DOWNLOAD
Author : Zhouchen Lin
language : en
Publisher: Springer Nature
Release Date : 2020-05-29

Accelerated Optimization For Machine Learning written by Zhouchen Lin and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-29 with Computers categories.


This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning. Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well as for graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.



Optimization Algorithms For Machine Learning


Optimization Algorithms For Machine Learning
DOWNLOAD
Author : Anant Raj
language : en
Publisher:
Release Date : 2020

Optimization Algorithms For Machine Learning written by Anant Raj and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.


With the advent of massive datasets and increasingly complex tasks, modern machine learning systems pose several new challenges in terms of scalability to high dimensional data as well as to large datasets. In this thesis, we consider to study scalable descent methods such as coordinate descent and stochastic coordinate descent which are based on the stochastic approximation of full gradient. In the first part of the thesis, we propose faster and scalable coordinate based opti- mization which scales to high dimensional problems. As a first step to achieve scalable coordinate based descent approaches, we propose a new framework to derive screening rules for convex optimization problems based on duality gap which covers a large class of constrained and penalized optimization formulations. In later stages, we develop new approximately greedy coordinate selection strategy in coordinate descent for large-scale optimization. This novel coordinate selection strategy provavbly works better than uni- formly random selection, and can reach the efficiency of steepest coordinate descent (SCD) in the best case. In best case scenario, this may enable an acceleration of a factor of up to n, the number of coordinates. Having similar objective in mind, we further propose an adaptive sampling strategy for sampling in stochastic gradient based optimization. The proposed safe sampling scheme provably achieves faster convergence than any fixed deterministic sampling schemes for coordinate descent and stochastic gradient descent methods. Exploiting the connection between matching pursuit where a more generalized notion of directions is considered and greedy coordinate descent where all the moving directions are orthogonal, we also propose a unified analysis for both the approaches and extend it to get the accelerated rate. In the second part of this thesis, we focus on providing provably faster and scalable mini batch stochastic gradient descent (SGD) algorithms. Variance reduced SGD methods converge significantly faster than the vanilla SGD counterpart. We propose a variance reduce algorithm k-SVRG that addresses issues of SVRG [98] and SAGA[54] by making best use of the available memory and minimizes the stalling phases without progress. In later part of the work, we provide a simple framework which utilizes the idea of optimistic update to obtain accelerated stochastic algorithms. We obtain accelerated variance reduced algorithm as well as accelerated universal algorithm as a direct consequence of this simple framework. Going further, we also employ the idea of local sensitivity based importance sampling in an iterative optimization method and analyze its convergence while optimizing over the selected subset. In the final part of the thesis, we connect the dots between coordinate descent method and stochastic gradient descent method in the interpolation regime. We show that better stochastic gradient based dual algorithms with fast rate of convergence can be obtained to optimize the convex objective in the interpolation regime.



Metaheuristics For Machine Learning


Metaheuristics For Machine Learning
DOWNLOAD
Author : Kanak Kalita
language : en
Publisher: John Wiley & Sons
Release Date : 2024-03-28

Metaheuristics For Machine Learning written by Kanak Kalita and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-28 with Computers categories.


METAHEURISTICS for MACHINE LEARNING The book unlocks the power of nature-inspired optimization in machine learning and presents a comprehensive guide to cutting-edge algorithms, interdisciplinary insights, and real-world applications. The field of metaheuristic optimization algorithms is experiencing rapid growth, both in academic research and industrial applications. These nature-inspired algorithms, which draw on phenomena like evolution, swarm behavior, and neural systems, have shown remarkable efficiency in solving complex optimization problems. With advancements in machine learning and artificial intelligence, the application of metaheuristic optimization techniques has expanded, demonstrating significant potential in optimizing machine learning models, hyperparameter tuning, and feature selection, among other use-cases. In the industrial landscape, these techniques are becoming indispensable for solving real-world problems in sectors ranging from healthcare to cybersecurity and sustainability. Businesses are incorporating metaheuristic optimization into machine learning workflows to improve decision-making, automate processes, and enhance system performance. As the boundaries of what is computationally possible continue to expand, the integration of metaheuristic optimization and machine learning represents a pioneering frontier in computational intelligence, making this book a timely resource for anyone involved in this interdisciplinary field. Metaheuristics for Machine Learning: Algorithms and Applications serves as a comprehensive guide to the intersection of nature-inspired optimization and machine learning. Authored by leading experts, this book seamlessly integrates insights from computer science, biology, and mathematics to offer a panoramic view of the latest advancements in metaheuristic algorithms. You’ll find detailed yet accessible discussions of algorithmic theory alongside real-world case studies that demonstrate their practical applications in machine learning optimization. Perfect for researchers, practitioners, and students, this book provides cutting-edge content with a focus on applicability and interdisciplinary knowledge. Whether you aim to optimize complex systems, delve into neural networks, or enhance predictive modeling, this book arms you with the tools and understanding you need to tackle challenges efficiently. Equip yourself with this essential resource and navigate the ever-evolving landscape of machine learning and optimization with confidence. Audience The book is aimed at a broad audience encompassing researchers, practitioners, and students in the fields of computer science, data science, engineering, and mathematics. The detailed but accessible content makes it a must-have for both academia and industry professionals interested in the optimization aspects of machine learning algorithms.



Bio Inspired Algorithms In Machine Learning And Deep Learning For Disease Detection


Bio Inspired Algorithms In Machine Learning And Deep Learning For Disease Detection
DOWNLOAD
Author : Balasubramaniam S
language : en
Publisher: CRC Press
Release Date : 2025-03-13

Bio Inspired Algorithms In Machine Learning And Deep Learning For Disease Detection written by Balasubramaniam S and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-13 with Technology & Engineering categories.


Currently, computational intelligence approaches are utilised in various science and engineering applications to analyse information, make decisions, and achieve optimisation goals. Over the past few decades, various techniques and algorithms have been created in disciplines such as genetic algorithms, artificial neural networks, evolutionary algorithms, and fuzzy algorithms. In the coming years, intelligent optimisation algorithms are anticipated to become more efficient in addressing various issues in engineering, scientific, medical, space, and artificial satellite fields, particularly in early disease diagnosis. A metaheuristic in computer science is designed to discover optimisation algorithms capable of solving intricate issues. Metaheuristics are optimisation algorithms that mimic biological behaviours of animals or birds and are utilised to discover the best solution for a certain problem. A meta-heuristic is an advanced approach used by heuristics to tackle intricate optimisation problems. A metaheuristic in mathematical programming is a method that seeks a solution to an optimisation problem. Metaheuristics utilise a heuristic function to assist in the search process. Heuristic search can be categorised as blind search or informed search. Meta-heuristic optimisation algorithms are gaining popularity in various applications due to their simplicity, independence from data trends, ability to find optimal solutions, and versatility across different fields. Recently, many nature-inspired computation algorithms have been utilised to diagnose people with different diseases. Nature-inspired methodologies are now widely utilised across several fields for tasks such as data analysis, decision-making, and optimisation. Techniques inspired by nature are categorised as either biology-based or natural phenomena-based. Bioinspired computing encompasses various topics in computer science, mathematics, and biology in recent years. Bio-inspired computer optimisation algorithms are a developing method that utilises concepts and inspiration from biological development to create new and resilient competitive strategies. Bio-inspired optimisation algorithms have gained recognition in machine learning and deep learning for solving complicated issues in science and engineering. Utilising BIAs learning methods with machine learning and deep learning shows great promise for accurately classifying medical conditions. This book explores the historical development of bio-inspired algorithms and their application in machine learning and deep learning models for disease diagnosis, including COVID-19, heart diseases, cancer, diabetes and some other diseases. It discusses the advantages of using bio-inspired algorithms in disease diagnosis and concludes with research directions and future prospects in this field.