Pattern Discovery Using Sequence Data Mining

DOWNLOAD
Download Pattern Discovery Using Sequence Data Mining PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Pattern Discovery Using Sequence Data Mining book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Pattern Discovery Using Sequence Data Mining
DOWNLOAD
Author : Pradeep Kumar
language : en
Publisher: IGI Global
Release Date : 2012
Pattern Discovery Using Sequence Data Mining written by Pradeep Kumar and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Computers categories.
"This book provides a comprehensive view of sequence mining techniques, and present current research and case studies in Pattern Discovery in Sequential data authored by researchers and practitioners"--
Sequence Data Mining
DOWNLOAD
Author : Guozhu Dong
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-31
Sequence Data Mining written by Guozhu Dong and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-31 with Computers categories.
Understanding sequence data, and the ability to utilize this hidden knowledge, will create a significant impact on many aspects of our society. Examples of sequence data include DNA, protein, customer purchase history, web surfing history, and more. This book provides thorough coverage of the existing results on sequence data mining as well as pattern types and associated pattern mining methods. It offers balanced coverage on data mining and sequence data analysis, allowing readers to access the state-of-the-art results in one place.
Pattern Discovery Using Sequence Data Mining
DOWNLOAD
Author : Pradeep Kumar
language : en
Publisher:
Release Date : 2012
Pattern Discovery Using Sequence Data Mining written by Pradeep Kumar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with categories.
"This book provides a comprehensive view of sequence mining techniques, and present current research and case studies in Pattern Discovery in Sequential data authored by researchers and practitioners"-- Provided by publisher.
R Mining Spatial Text Web And Social Media Data
DOWNLOAD
Author : Bater Makhabel
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-06-19
R Mining Spatial Text Web And Social Media Data written by Bater Makhabel and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-19 with Computers categories.
Create data mining algorithms About This Book Develop a strong strategy to solve predictive modeling problems using the most popular data mining algorithms Real-world case studies will take you from novice to intermediate to apply data mining techniques Deploy cutting-edge sentiment analysis techniques to real-world social media data using R Who This Book Is For This Learning Path is for R developers who are looking to making a career in data analysis or data mining. Those who come across data mining problems of different complexities from web, text, numerical, political, and social media domains will find all information in this single learning path. What You Will Learn Discover how to manipulate data in R Get to know top classification algorithms written in R Explore solutions written in R based on R Hadoop projects Apply data management skills in handling large data sets Acquire knowledge about neural network concepts and their applications in data mining Create predictive models for classification, prediction, and recommendation Use various libraries on R CRAN for data mining Discover more about data potential, the pitfalls, and inferencial gotchas Gain an insight into the concepts of supervised and unsupervised learning Delve into exploratory data analysis Understand the minute details of sentiment analysis In Detail Data mining is the first step to understanding data and making sense of heaps of data. Properly mined data forms the basis of all data analysis and computing performed on it. This learning path will take you from the very basics of data mining to advanced data mining techniques, and will end up with a specialized branch of data mining—social media mining. You will learn how to manipulate data with R using code snippets and how to mine frequent patterns, association, and correlation while working with R programs. You will discover how to write code for various predication models, stream data, and time-series data. You will also be introduced to solutions written in R based on R Hadoop projects. Now that you are comfortable with data mining with R, you will move on to implementing your knowledge with the help of end-to-end data mining projects. You will learn how to apply different mining concepts to various statistical and data applications in a wide range of fields. At this stage, you will be able to complete complex data mining cases and handle any issues you might encounter during projects. After this, you will gain hands-on experience of generating insights from social media data. You will get detailed instructions on how to obtain, process, and analyze a variety of socially-generated data while providing a theoretical background to accurately interpret your findings. You will be shown R code and examples of data that can be used as a springboard as you get the chance to undertake your own analyses of business, social, or political data. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Learning Data Mining with R by Bater Makhabel R Data Mining Blueprints by Pradeepta Mishra Social Media Mining with R by Nathan Danneman and Richard Heimann Style and approach A complete package with which will take you from the basics of data mining to advanced data mining techniques, and will end up with a specialized branch of data mining—social media mining.
Frequent Pattern Mining
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer
Release Date : 2014-08-29
Frequent Pattern Mining written by Charu C. Aggarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-29 with Computers categories.
This comprehensive reference consists of 18 chapters from prominent researchers in the field. Each chapter is self-contained, and synthesizes one aspect of frequent pattern mining. An emphasis is placed on simplifying the content, so that students and practitioners can benefit from the book. Each chapter contains a survey describing key research on the topic, a case study and future directions. Key topics include: Pattern Growth Methods, Frequent Pattern Mining in Data Streams, Mining Graph Patterns, Big Data Frequent Pattern Mining, Algorithms for Data Clustering and more. Advanced-level students in computer science, researchers and practitioners from industry will find this book an invaluable reference.
Urban Informatics
DOWNLOAD
Author : Wenzhong Shi
language : en
Publisher: Springer Nature
Release Date : 2021-04-06
Urban Informatics written by Wenzhong Shi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-06 with Social Science categories.
This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.
Data Mining Concepts And Techniques
DOWNLOAD
Author : Jiawei Han
language : en
Publisher: Elsevier
Release Date : 2011-06-09
Data Mining Concepts And Techniques written by Jiawei Han and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-09 with Computers categories.
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Data Mining
DOWNLOAD
Author : Krzysztof J. Cios
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-05
Data Mining written by Krzysztof J. Cios and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-05 with Computers categories.
“If you torture the data long enough, Nature will confess,” said 1991 Nobel-winning economist Ronald Coase. The statement is still true. However, achieving this lofty goal is not easy. First, “long enough” may, in practice, be “too long” in many applications and thus unacceptable. Second, to get “confession” from large data sets one needs to use state-of-the-art “torturing” tools. Third, Nature is very stubborn — not yielding easily or unwilling to reveal its secrets at all. Fortunately, while being aware of the above facts, the reader (a data miner) will find several efficient data mining tools described in this excellent book. The book discusses various issues connecting the whole spectrum of approaches, methods, techniques and algorithms falling under the umbrella of data mining. It starts with data understanding and preprocessing, then goes through a set of methods for supervised and unsupervised learning, and concludes with model assessment, data security and privacy issues. It is this specific approach of using the knowledge discovery process that makes this book a rare one indeed, and thus an indispensable addition to many other books on data mining. To be more precise, this is a book on knowledge discovery from data. As for the data sets, the easy-to-make statement is that there is no part of modern human activity left untouched by both the need and the desire to collect data. The consequence of such a state of affairs is obvious.
Machine Learning And Data Mining In Pattern Recognition
DOWNLOAD
Author : Petra Perner
language : en
Publisher: Springer
Release Date : 2014-07-17
Machine Learning And Data Mining In Pattern Recognition written by Petra Perner and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-17 with Computers categories.
This book constitutes the refereed proceedings of the 10th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2014, held in St. Petersburg, Russia in July 2014. The 40 full papers presented were carefully reviewed and selected from 128 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining.
Data Mining Concepts Methodologies Tools And Applications
DOWNLOAD
Author : Management Association, Information Resources
language : en
Publisher: IGI Global
Release Date : 2012-11-30
Data Mining Concepts Methodologies Tools And Applications written by Management Association, Information Resources and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-30 with Computers categories.
Data mining continues to be an emerging interdisciplinary field that offers the ability to extract information from an existing data set and translate that knowledge for end-users into an understandable way. Data Mining: Concepts, Methodologies, Tools, and Applications is a comprehensive collection of research on the latest advancements and developments of data mining and how it fits into the current technological world.