[PDF] Performance Assessment Of Warm Mix Asphalt Wma Pavements In Presence Of Water By Using Nano Scale Techniques And Traditional Laboratory Tests - eBooks Review

Performance Assessment Of Warm Mix Asphalt Wma Pavements In Presence Of Water By Using Nano Scale Techniques And Traditional Laboratory Tests


Performance Assessment Of Warm Mix Asphalt Wma Pavements In Presence Of Water By Using Nano Scale Techniques And Traditional Laboratory Tests
DOWNLOAD

Download Performance Assessment Of Warm Mix Asphalt Wma Pavements In Presence Of Water By Using Nano Scale Techniques And Traditional Laboratory Tests PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Performance Assessment Of Warm Mix Asphalt Wma Pavements In Presence Of Water By Using Nano Scale Techniques And Traditional Laboratory Tests book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Performance Assessment Of Warm Mix Asphalt Wma Pavements In Presence Of Water By Using Nano Scale Techniques And Traditional Laboratory Tests


Performance Assessment Of Warm Mix Asphalt Wma Pavements In Presence Of Water By Using Nano Scale Techniques And Traditional Laboratory Tests
DOWNLOAD
Author : Abdalla S. Al-Rawashdeh
language : en
Publisher:
Release Date : 2012

Performance Assessment Of Warm Mix Asphalt Wma Pavements In Presence Of Water By Using Nano Scale Techniques And Traditional Laboratory Tests written by Abdalla S. Al-Rawashdeh and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Moisture categories.




Performance Assessment Of Warm Mix Asphalt Wma Pavements


Performance Assessment Of Warm Mix Asphalt Wma Pavements
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2009

Performance Assessment Of Warm Mix Asphalt Wma Pavements written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Pavements, Asphalt categories.


Warm Mix Asphalt (WMA) is a new technology that was introduced in Europe in 1995. WMA offers several advantages over conventional asphalt concrete mixtures, including: reduced energy consumption, reduced emissions, improved or more uniform binder coating of aggregate which should reduce mix surface aging, and extended construction season in temperate climates. Three WMA techniques, Aspha-min, Sasobit, and Evotherm, were used to reduce the viscosity of the asphalt binder at certain temperatures and to dry and fully coat the aggregates at a lower production temperature than conventional hot mix asphalt. The reduction in mixing and compaction temperatures of asphalt mixtures leads to a reduction in both fuel consumption and emissions. This research project had two major components, the outdoor field study on SR541 in Guernsey County and the indoor study in the Accelerated Pavement Load Facility (APLF). Each study included the application of four types of asphalt surface layer, including standard hot mix asphalt as a control and three warm mixes: Evotherm, Aspha-min, and Sasobit. The outdoor study began with testing of the preexisting pavement and subgrade, the results of which indicated that while the pavement and subgrade were not uniform, there were no significant problems or variations that would be expected to lead to differences in performance of the planned test sections. During construction, the outdoor study included collection of emissions samples at the plant and on the construction site as well as thermal readings from the site. Afterwards, the outdoor study included the periodic collection and laboratory analysis of core samples and visual inspections of the road. Roughness (IRI) measurements were made shortly after construction and after a year of service. The indoor study involved the construction of four lanes of perpetual pavement, each topped with one of the test mixes. The lanes were further divided into northern and southern halves, with the northern halves having a full 16 in (40 cm) perpetual pavement, and with the southern halves with thicknesses decreasing in one in (2.5 cm) increments by reducing the intermediate layer. The dense graded aggregate base was increased to compensate for the change in pavement thickness. The southern half of each lane was instrumented to measure temperature, subgrade pressure, deflection relative to top of subgrade and to a point 5 ft (1.5 m) down, and longitudinal and transverse strains at the base of the fatigue resistance layer (FRL). The APLF had the temperature set to 40°F (4.4°C), 70°F (21.1°C), and 104°F (40°C), in that order. At each temperature, rolling wheel loads of 6000 lb (26.7 kN), 9000 lb (40 kN), and 12,000 lb (53.4 kN) were applied at lateral shifts of 3 in (76 mm), 1 in (25 mm), -4 in ( -102 mm), and -9 in ( - 229 mm) and the response measured. Then each plane was subjected to 10,000 passes of the rolling wheel load of 9000 lb (40 kN) at about 5 mph (8 km/h). Profiles were measured after 100, 300, 1000, 3000, and 10,000 passes with a profilometer to assess consolidation of each surface. After the 10,000 passes of the rolling wheel load were completed, a second set of measurements was made under rolling wheel loads of 6000 lb (26.7 kN), 9000 lb (40 kN), and 12,000 lb (53.4 kN) at the same lateral shifts as before. Additionally, the response of the pavement instrumentation was recorded during drops of a Falling Weight Deflectometer (FWD).



Performance Evaluation Of Foamed Warm Mix Asphalt Produced By Water Injection


Performance Evaluation Of Foamed Warm Mix Asphalt Produced By Water Injection
DOWNLOAD
Author : Ayman Ali
language : en
Publisher:
Release Date : 2013

Performance Evaluation Of Foamed Warm Mix Asphalt Produced By Water Injection written by Ayman Ali and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Asphalt categories.


In recent years, a new group of technologies has been introduced in the United States that allow producing asphalt mixtures at temperatures 30 to 100oF lower than what is used in traditional hot mix asphalt (HMA). These technologies are commonly referred to as Warm Mix Asphalt (WMA). From among these technologies, foamed WMA produced by water injection has gained increased attention from the asphalt paving industry in Ohio since it does not require the use of costly additives. This type of asphalt mixtures is advertised as an environmentally friendly alternative to traditional HMA and promoted to have better workability and compactability. In spite of these advantages, several concerns have been raised regarding the performance of foamed WMA because of the reduced production temperature and its impact on aggregate drying and asphalt binder aging. Main concerns include increased propensity for moisture-induced damage (durability) and increased susceptibility to permanent deformation (rutting). Other concerns include insufficient coating of coarse aggregates, and applicability of HMA mix design procedures to foamed WMA mixtures. This dissertation presents the results of a comprehensive study conducted to evaluate the laboratory performance of foamed WMA mixtures with regard to permanent deformation, moisture-induced damage, fatigue cracking, and low-temperature (thermal) cracking; and compare it to traditional HMA. In addition, the workability of foamed WMA and HMA mixtures was evaluated using a new device that was designed and fabricated at the University of Akron, and the compactability of both mixtures was examined by analyzing compaction data collected using the Superpave gyratory compactor. The effect of the temperature reduction, foaming water content, and aggregate moisture content on the performance of foamed WMA was also investigated. Furthermore, the rutting performance of plant-produced foamed WMA and HMA mixtures was evaluated in the Accelerated Pavement Load Facility (APLF) at Ohio University, and the long-term performance of pavement structures constructed using foamed WMA and HMA surface and intermediate courses was analyzed using the Mechanistic-Empirical Pavement Design Guide (MEPDG). Based on the experimental test results and the subsequent analyses findings, the following are the main conclusions made: In general, comparable laboratory test results were obtained for foamed WMA and HMA mixtures prepared using 30°F (16.7°C) temperature reduction, 1.8% foaming water content, and fully dried aggregates. Therefore, the performance of the resulting foamed WMA is expected to be similar to that of the HMA. Surface foamed WMA mixtures had comparable rutting performance in the APLF to that of the HMA mixtures. This was also the case for intermediate foamed WMA and HMA mixtures. These results indicate the field performance of the foamed WMA mixtures is similar to that of the HMA mixtures.



Evaluation Of Warm Mix Asphalt Technology For Urban Pavement Rehabilitation Projects


Evaluation Of Warm Mix Asphalt Technology For Urban Pavement Rehabilitation Projects
DOWNLOAD
Author : Salvatory Materu
language : en
Publisher:
Release Date : 2020

Evaluation Of Warm Mix Asphalt Technology For Urban Pavement Rehabilitation Projects written by Salvatory Materu and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.


Warm Mix Asphalt (WMA) technology has the capability of lowering the temperature at which the asphalt is mixed and compacted by 30°C or more without compromising the performance of asphalt pavement. The reduced difference between asphalt mix and ambient temperature results in a lower cooling rate thus allows for long haul, sufficient compaction time and late season projects compared to the conventional Hot Mix Asphalt (HMA). In northern climate, asphalt paving season is relatively short and paving is often done late in the season when weather conditions are less than ideal. The potential benefit of WMA, among others, is an extended paving season for the City of Winnipeg. Reduction in production temperature also comes with other positive impacts both economically and environmentally. The objective of this study is to evaluate the installation of WMA, compile experiences with this technology and evaluate their effects on construction methods and performance. The study further attempts to evaluate the effectiveness of the WMA chemical additives and its dosage rate as liquid anti-strip agents on the properties of WMA mixtures through field and laboratory testing programs. In addition to the overall effectiveness of WMA, the study aimed to evaluate its economic cost relative to Hot Mix Asphalt (HMA). A chemical additive was used at three different dosages (0.3, 0.5 and 0.7 percent by weight of asphalt cement). The additive has the ability to improve mixing, aggregate coating, workability, compaction and adhesion with no change in materials or job mix formula required. The study showed that WMA could be successfully placed using conventional HMA paving practices and procedures. Among the different additive dosages used, 0.5% had a better overall performance. The moisture sensitivity tests indicated the highest Tensile Strength Ratio (TSR) at this dosage, suggesting the lowest moisture damage susceptibility. All four mixtures had low rutting resistance potential with no significant difference among them. The WMA showed a higher cracking resistance compared to HMA. The WMA price was between 2% to 11% higher than conventional HMA including the costs of additional testing as well as the WMA additives.



Evaluation Of The Moisture Susceptibility Of Wma Technologies


Evaluation Of The Moisture Susceptibility Of Wma Technologies
DOWNLOAD
Author : Amy Epps Martin
language : en
Publisher: Transportation Research Board
Release Date : 2014

Evaluation Of The Moisture Susceptibility Of Wma Technologies written by Amy Epps Martin and has been published by Transportation Research Board this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with Technology & Engineering categories.


"TRB's National Cooperative Highway Research Program (NCHRP) Report 763: Evaluation of the Moisture Susceptibility of WMA Technologies presents proposed guidelines for identifying potential moisture susceptibility in warm mix asphalt (WMA). The report also suggests potential revisions to the Appendix to AASHTO R 35, "Special Mixture Design Considerations and Methods for WMA" as a means to implement the guidelines."--publisher's description



Laboratory Evaluation Of Performance Of Warm Mix Asphalt In Washington State


Laboratory Evaluation Of Performance Of Warm Mix Asphalt In Washington State
DOWNLOAD
Author : Nathan Bower
language : en
Publisher:
Release Date : 2011

Laboratory Evaluation Of Performance Of Warm Mix Asphalt In Washington State written by Nathan Bower and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Asphalt concrete categories.




Performance Evaluation Of Warm Mix Asphalt Mixtures Incorporating Reclaimed Asphalt Pavement


Performance Evaluation Of Warm Mix Asphalt Mixtures Incorporating Reclaimed Asphalt Pavement
DOWNLOAD
Author : Brian Hill
language : en
Publisher:
Release Date : 2011

Performance Evaluation Of Warm Mix Asphalt Mixtures Incorporating Reclaimed Asphalt Pavement written by Brian Hill and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with categories.


Sustainability is a cornerstone of today0́9s engineering world. Warm mix asphalt (WMA) and reclaimed asphalt pavement (RAP) are the most prominent sustainable materials in asphalt concrete pavements. WMA is a not a new concept, however new innovations and increased usage of WMA has been spurred by the increased focus on sustainable infrastructure systems. WMA enables reduced production temperatures through the use of wax, water, or other chemical packages. The effects of reduced production temperatures include fuel use and emissions reductions, improved compaction, and possible RAP concentration increases. RAP is the primary recycled product of the aged asphalt concrete pavements and its use leads to reductions in virgin aggregate and asphalt demand. However, significant performance issues can stem from the individual integration of WMA or RAP materials in asphalt concrete. In particular, WMA technologies can increase moisture and rutting susceptibility while RAP significantly increases the stiffness of the resulting mixture. Consequently, quality performance of sustainable asphalt pavements may require the combined use of WMA and RAP to produce mixtures with sufficient stiffness and moisture and fracture resistance. This study evaluates the potential of WMA technologies and their integration with RAP. Initially, an extensive literature review was completed to understand the advantages, disadvantages, and past field and lab performance of WMA and RAP mixtures. Rotational viscometer and bending beam rheometer tests were then used to evaluate Sasobit, Evotherm M1, and Advera WMA modified and unmodified binders. Finally, virgin and 45% RAP mixtures were designed and tested to examine the rutting, moisture, and fracture resistance of WMA and HMA mixtures. The results of this experiment provided several key observations. First, viscosity reductions may not be the primary cause for the availability of reduced production temperatures for WMA technologies. Second, WMA additive properties have a significant effect upon fracture, moisture, and rutting resistance. Furthermore, the addition of RAP to WMA mixtures improved the rutting and moisture sensitivity performance as characterized in the Hamburg and Tensile Strength Ratio testing procedures.



Laboratory Evaluation Of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders


Laboratory Evaluation Of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders
DOWNLOAD
Author : Ayman W. Ali
language : en
Publisher:
Release Date : 2010

Laboratory Evaluation Of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders written by Ayman W. Ali and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Asphalt categories.


Warm Mix Asphalt (WMA) is a name given to different technologies that have the common purpose of reducing the viscosity of the asphalt binders. This reduction in viscosity offers the advantage of producing asphalt-aggregate mixtures at lower mixing and compaction temperatures, and subsequently reducing energy consumption and pollutant emissions during asphalt mix production and placement. WMA technologies can be classified into two groups. The first group reduces the asphalt binders' viscosity through the addition of organic or chemical additives, while the second group reduces the viscosity of the asphalt binders through the addition of water. The latter has received increased attention in Ohio since it does not require the use of costly additives. In spite of the above-mentioned advantages for WMA mixtures, many concerns have been raised regarding the susceptibility of this material to moisture-induced damage and permanent deformation due to the reduced temperature level used during WMA production. Therefore, this study was conducted to develop a laboratory procedure to produce WMA mixtures prepared using foamed asphalt binders (WMA-FA), and to evaluate their performance in comparison to conventional Hot Mix Asphalt (HMA). This study involved two types of aggregates (natural gravel and crushed limestone) and two types of asphalt binders (PG 64-22 and PG 70-22M). A laboratory scale asphalt binder foaming device called WLB10, produced by Wirtgen, Inc., was used to foam the asphalt binders. The aggregate gradation met the Ohio Department of Transportation (ODOT) Construction and Materials Specification (C&MS) requirements for Item 441 Type 1 Surface Course for Medium Traffic. The resistance of WMA-FA and HMA mixtures to moisture-induced damage was measured using AASHTO T-283, and the resistance to permanent deformation was measured using the Asphalt Pavement Analyzer (APA) and the Simple Performance Test (SPT). Based on the experimental test results and the subsequent analyses findings, the following conclusions were made: [1] WMA-FA mixtures are more workable and easily compacted than HMA mixtures even though they are produced at lower mixing and compaction temperatures; [2] WMA-FA mixtures are slightly more susceptible to moisture damage than HMA mixtures. However, the difference is statistically insignificant. Therefore, if designed properly, both mixtures are expected to meet ODOT's minimum TSR requirement for the proposed traffic level; [3] WMA-FA mixtures, especially those prepared using gravel aggregates and unmodified asphalt binders are more prone to rutting than the corresponding HMA mixtures. Therefore, it is recommended to include the APA test as part of the WMA mix design procedure to ensure satisfactory performance for rutting.



Evaluation Of Moisture Damage In Warm Mix Asphalt Containing Recycled Asphalt Pavement


Evaluation Of Moisture Damage In Warm Mix Asphalt Containing Recycled Asphalt Pavement
DOWNLOAD
Author : Emily Dawn Shrum
language : en
Publisher:
Release Date : 2010

Evaluation Of Moisture Damage In Warm Mix Asphalt Containing Recycled Asphalt Pavement written by Emily Dawn Shrum and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with categories.


Warm mix asphalt (WMA) has been used worldwide for many years, primarily in Europe. The National Asphalt Pavement Association first brought WMA to the United States in 2002. By using warm mix technology, the temperature of an asphalt mixture during production, transportation, and compaction decreases dramatically. Several concerns about WMA arise due to the reduced mixing temperature. One of the primary concerns in asphalt pavement is the moisture damage. The lower mixing temperature may not be high enough to vaporize all the moisture absorbed in the aggregate, and part of the moisture may be entrapped in the pavements during compaction. This thesis presents a laboratory study to evaluate the moisture susceptibility of warm mix asphalt (WMA) produced through plant foaming procedure. Two types of mixtures were evaluated. A base mixture meeting the state of Tennessee "BM-2" mix criteria was evaluated at 0, 30, 40, and 50 percent fractionated recycled asphalt pavement (RAP), and a surface mixture meeting the state of Tennessee "411-D" mix criteria was evaluated at 15, 20, 30, 40 percent fractionated RAP. WMA mixture specimens were obtained and compacted at the asphalt plant. The WMA specimens were compared to hot-mix asphalt (HMA) specimens through a set of laboratory mixture performance tests. In addition to traditional AASHTO T283 freeze and thaw (F-T) tensile strength ratio (TSR), Superpave indirect tensile test (IDT) with F-T and MIST conditioning, and Asphalt Pavement Analyzer (APA) Hamburg wheel tracking tests were utilized to evaluate asphalt mixtures. Moisture tests indicated that with the higher inclusions of RAP, specimens exhibited lower rut depths and higher tensile strength retention. Tensile strength ratio tests indicated that HMA specimens had higher tensile strength retention when freeze thaw conditioned. Dynamic modulus conditioned specimens indicated that simple performance tests can show the difference between conditioned and unconditioned specimens. HMA specimens showed lower susceptibility to moisture compared to WMA specimens for both BM-2 and 411-D mixtures. The higher percentages of RAP in WMA and HMA in both BM-2 and 411-D mixtures showed a reduction to moisture susceptibility.



Laboratory Evaluation Of Warm Mix Asphalt


Laboratory Evaluation Of Warm Mix Asphalt
DOWNLOAD
Author : Zhanping Yuo
language : en
Publisher:
Release Date : 2011

Laboratory Evaluation Of Warm Mix Asphalt written by Zhanping Yuo and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Asphalt emulsion mixtures categories.


Hot Mix Asphalt (HMA) has been traditionally produced at a discharge temperature of between 280° F (138° C) and 320° F (160° C), resulting in high energy (fuel) costs and generation of greenhouse gases. The goal for Warm Mix Asphalt (WMA) is to use existing HMA plants and specifications to produce quality dense graded mixtures at significantly lower temperatures. Europeans are using WMA technologies that allow the mixture to be placed at temperatures as low as 250° F (121° C). It is reported that energy savings on the order of 30%, with a corresponding reduction in CO2 emissions of 30%, are realized when WMA is used compared to conventional HMA. Although numerous studies have been conducted on WMA, only limited laboratory experiments are available and most of the current WMA laboratory test results are inconsistent and not compatible with field performance The main objectives of this study are: The main objectives of this study are: 1) review and synthesize information on the available WMA technologies; 2) measure the complex/dynamic modulus of WMA and the control mixtures (HMA) for comparison purpose and for use in mechanistic-empirical (ME) design comparison; 3) assess the rutting and fatigue potential of WMA mixtures; and 4) provide recommendation for the proper WMA for use in Michigan considering the aggregate, binder, and climatic factors. The testing results indicated that most of the WMA has higher fatigue life and TSR which indicated WMA has better fatigue cracking and moisture damage resistant; however, the rutting potential of most of the WMA tested were higher than the control HMA. In addition, the WMA design framework was developed based on the testing results, and presented in this study to allow contractors and state agencies to successfully design WMA around the state of Michigan.