[PDF] Perspectives On Data Science For Software Engineering - eBooks Review

Perspectives On Data Science For Software Engineering


Perspectives On Data Science For Software Engineering
DOWNLOAD

Download Perspectives On Data Science For Software Engineering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Perspectives On Data Science For Software Engineering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Perspectives On Data Science For Software Engineering


Perspectives On Data Science For Software Engineering
DOWNLOAD
Author : Tim Menzies
language : en
Publisher: Morgan Kaufmann
Release Date : 2016-07-14

Perspectives On Data Science For Software Engineering written by Tim Menzies and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-14 with Computers categories.


Perspectives on Data Science for Software Engineering presents the best practices of seasoned data miners in software engineering. The idea for this book was created during the 2014 conference at Dagstuhl, an invitation-only gathering of leading computer scientists who meet to identify and discuss cutting-edge informatics topics. At the 2014 conference, the concept of how to transfer the knowledge of experts from seasoned software engineers and data scientists to newcomers in the field highlighted many discussions. While there are many books covering data mining and software engineering basics, they present only the fundamentals and lack the perspective that comes from real-world experience. This book offers unique insights into the wisdom of the community's leaders gathered to share hard-won lessons from the trenches. Ideas are presented in digestible chapters designed to be applicable across many domains. Topics included cover data collection, data sharing, data mining, and how to utilize these techniques in successful software projects. Newcomers to software engineering data science will learn the tips and tricks of the trade, while more experienced data scientists will benefit from war stories that show what traps to avoid. - Presents the wisdom of community experts, derived from a summit on software analytics - Provides contributed chapters that share discrete ideas and technique from the trenches - Covers top areas of concern, including mining security and social data, data visualization, and cloud-based data - Presented in clear chapters designed to be applicable across many domains



New Perspectives In Software Engineering


New Perspectives In Software Engineering
DOWNLOAD
Author : Jezreel Mejia
language : en
Publisher: Springer Nature
Release Date : 2022-10-29

New Perspectives In Software Engineering written by Jezreel Mejia and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-29 with Technology & Engineering categories.


This book contains the proceedings of the CIMPS Conference held on October 19-21, 2022, Hipócrates University, Acapulco de Juárez, Guerrero, México, that is dedicated to Software Engineering, in particular, software processes improvement, computer security and communication technology, artificial intelligence and data analysis (big data) with a focus on innovation and/or entrepreneurship, bringing together the academic sectors, governmental and industrial that promote the comprehensive development of a culture of research, innovation and competitiveness of organizations dedicated to and/or that make use of Information and Communication Telecommunications. This book presents software engineering with impact in a combination of different fields: Organizational Models, Standards and Methodologies, Knowledge Management, Software Systems, Applications and Tools, Information and Communication Technologies, Information security, Artificial intelligence, Data Analysis. It is used in different domains in which a broad scope of audience is interested in: • Software engineers • Analyst • Project management • Consultant • Professors in academia • Students • Corporate heads of firms • Senior general managers • Managing directors • Board directors • Academics and researchers in the field both in universities and business schools • Information technology directors and managers • Quality managers and directors • Libraries and information centres serving the needs of the above This book contents are also useful for Ph.D. students, master’s and undergraduate students of IT-related degrees such as Computer Science, Information Systems.



Software Engineering Perspectives In Intelligent Systems


Software Engineering Perspectives In Intelligent Systems
DOWNLOAD
Author : Radek Silhavy
language : en
Publisher: Springer Nature
Release Date : 2020-12-15

Software Engineering Perspectives In Intelligent Systems written by Radek Silhavy and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-15 with Technology & Engineering categories.


This book constitutes the refereed proceedings of the 4th Computational Methods in Systems and Software 2020 (CoMeSySo 2020) proceedings. Software engineering, computer science and artificial intelligence are crucial topics for the research within an intelligent systems problem domain. The CoMeSySo 2020 conference is breaking the barriers, being held online. CoMeSySo 2020 intends to provide an international forum for the discussion of the latest high-quality research results.



Contemporary Empirical Methods In Software Engineering


Contemporary Empirical Methods In Software Engineering
DOWNLOAD
Author : Michael Felderer
language : en
Publisher: Springer Nature
Release Date : 2020-08-27

Contemporary Empirical Methods In Software Engineering written by Michael Felderer and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-27 with Computers categories.


This book presents contemporary empirical methods in software engineering related to the plurality of research methodologies, human factors, data collection and processing, aggregation and synthesis of evidence, and impact of software engineering research. The individual chapters discuss methods that impact the current evolution of empirical software engineering and form the backbone of future research. Following an introductory chapter that outlines the background of and developments in empirical software engineering over the last 50 years and provides an overview of the subsequent contributions, the remainder of the book is divided into four parts: Study Strategies (including e.g. guidelines for surveys or design science); Data Collection, Production, and Analysis (highlighting approaches from e.g. data science, biometric measurement, and simulation-based studies); Knowledge Acquisition and Aggregation (highlighting literature research, threats to validity, and evidence aggregation); and Knowledge Transfer (discussing open science and knowledge transfer with industry). Empirical methods like experimentation have become a powerful means of advancing the field of software engineering by providing scientific evidence on software development, operation, and maintenance, but also by supporting practitioners in their decision-making and learning processes. Thus the book is equally suitable for academics aiming to expand the field and for industrial researchers and practitioners looking for novel ways to check the validity of their assumptions and experiences. Chapter 17 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.



Handbook Of Research On Applied Data Science And Artificial Intelligence In Business And Industry


Handbook Of Research On Applied Data Science And Artificial Intelligence In Business And Industry
DOWNLOAD
Author : Chkoniya, Valentina
language : en
Publisher: IGI Global
Release Date : 2021-06-25

Handbook Of Research On Applied Data Science And Artificial Intelligence In Business And Industry written by Chkoniya, Valentina and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-25 with Computers categories.


The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students.



Practitioner S Guide To Data Science


Practitioner S Guide To Data Science
DOWNLOAD
Author : Nasir Ali Mirza
language : en
Publisher: BPB Publications
Release Date : 2022-01-17

Practitioner S Guide To Data Science written by Nasir Ali Mirza and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-17 with Computers categories.


Covers Data Science concepts, processes, and the real-world hands-on use cases. KEY FEATURES ● Covers the journey from a basic programmer to an effective Data Science developer. ● Applied use of Data Science native processes like CRISP-DM and Microsoft TDSP. ● Implementation of MLOps using Microsoft Azure DevOps. DESCRIPTION "How is the Data Science project to be implemented?" has never been more conceptually sounding, thanks to the work presented in this book. This book provides an in-depth look at the current state of the world's data and how Data Science plays a pivotal role in everything we do. This book explains and implements the entire Data Science lifecycle using well-known data science processes like CRISP-DM and Microsoft TDSP. The book explains the significance of these processes in connection with the high failure rate of Data Science projects. The book helps build a solid foundation in Data Science concepts and related frameworks. It teaches how to implement real-world use cases using data from the HMDA dataset. It explains Azure ML Service architecture, its capabilities, and implementation to the DS team, who will then be prepared to implement MLOps. The book also explains how to use Azure DevOps to make the process repeatable while we're at it. By the end of this book, you will learn strong Python coding skills, gain a firm grasp of concepts such as feature engineering, create insightful visualizations and become acquainted with techniques for building machine learning models. WHAT YOU WILL LEARN ● Organize Data Science projects using CRISP-DM and Microsoft TDSP. ● Learn to acquire and explore data using Python visualizations. ● Get well versed with the implementation of data pre-processing and Feature Engineering. ● Understand algorithm selection, model development, and model evaluation. ● Hands-on with Azure ML Service, its architecture, and capabilities. ● Learn to use Azure ML SDK and MLOps for implementing real-world use cases. WHO THIS BOOK IS FOR This book is intended for programmers who wish to pursue AI/ML development and build a solid conceptual foundation and familiarity with related processes and frameworks. Additionally, this book is an excellent resource for Software Architects and Managers involved in the design and delivery of Data Science-based solutions. TABLE OF CONTENTS 1. Data Science for Business 2. Data Science Project Methodologies and Team Processes 3. Business Understanding and Its Data Landscape 4. Acquire, Explore, and Analyze Data 5. Pre-processing and Preparing Data 6. Developing a Machine Learning Model 7. Lap Around Azure ML Service 8. Deploying and Managing Models



Artificial Intelligence Methods For Software Engineering


Artificial Intelligence Methods For Software Engineering
DOWNLOAD
Author : Meir Kalech
language : en
Publisher: World Scientific
Release Date : 2021-06-15

Artificial Intelligence Methods For Software Engineering written by Meir Kalech and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-15 with Computers categories.


Software is an integral part of our lives today. Modern software systems are highly complex and often pose new challenges in different aspects of Software Engineering (SE).Artificial Intelligence (AI) is a growing field in computer science that has been proven effective in applying and developing AI techniques to address various SE challenges.This unique compendium covers applications of state-of-the-art AI techniques to the key areas of SE (design, development, debugging, testing, etc).All the materials presented are up-to-date. This reference text will benefit researchers, academics, professionals, and postgraduate students in AI, machine learning and software engineering.Related Link(s)



Software Engineering Perspectives In Systems


Software Engineering Perspectives In Systems
DOWNLOAD
Author : Radek Silhavy
language : en
Publisher: Springer Nature
Release Date : 2022-07-16

Software Engineering Perspectives In Systems written by Radek Silhavy and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-07-16 with Technology & Engineering categories.


The study of software engineering and its applications to system engineering is critical in computer science research. Modern research methodologies, as well as the use of machine and statistical learning in software engineering research, are covered in this book. This book contains the refereed proceedings of the Software Engineering Perspectives in Systems part of the 11th Computer Science On-line Conference 2022 (CSOC 2022), which was held in April 2022 online.



Envisioning The Data Science Discipline


Envisioning The Data Science Discipline
DOWNLOAD
Author : National Academies of Sciences, Engineering, and Medicine
language : en
Publisher: National Academies Press
Release Date : 2018-03-05

Envisioning The Data Science Discipline written by National Academies of Sciences, Engineering, and Medicine and has been published by National Academies Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-05 with Education categories.


The need to manage, analyze, and extract knowledge from data is pervasive across industry, government, and academia. Scientists, engineers, and executives routinely encounter enormous volumes of data, and new techniques and tools are emerging to create knowledge out of these data, some of them capable of working with real-time streams of data. The nation's ability to make use of these data depends on the availability of an educated workforce with necessary expertise. With these new capabilities have come novel ethical challenges regarding the effectiveness and appropriateness of broad applications of data analyses. The field of data science has emerged to address the proliferation of data and the need to manage and understand it. Data science is a hybrid of multiple disciplines and skill sets, draws on diverse fields (including computer science, statistics, and mathematics), encompasses topics in ethics and privacy, and depends on specifics of the domains to which it is applied. Fueled by the explosion of data, jobs that involve data science have proliferated and an array of data science programs at the undergraduate and graduate levels have been established. Nevertheless, data science is still in its infancy, which suggests the importance of envisioning what the field might look like in the future and what key steps can be taken now to move data science education in that direction. This study will set forth a vision for the emerging discipline of data science at the undergraduate level. This interim report lays out some of the information and comments that the committee has gathered and heard during the first half of its study, offers perspectives on the current state of data science education, and poses some questions that may shape the way data science education evolves in the future. The study will conclude in early 2018 with a final report that lays out a vision for future data science education.



Cloud Based Big Data Analytics In Vehicular Ad Hoc Networks


Cloud Based Big Data Analytics In Vehicular Ad Hoc Networks
DOWNLOAD
Author : Rao, Ram Shringar
language : en
Publisher: IGI Global
Release Date : 2020-09-11

Cloud Based Big Data Analytics In Vehicular Ad Hoc Networks written by Rao, Ram Shringar and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-11 with Computers categories.


Vehicular traffic congestion and accidents remain universal issues in today’s world. Due to the continued growth in the use of vehicles, optimizing traffic management operations is an immense challenge. To reduce the number of traffic accidents, improve the performance of transportation systems, enhance road safety, and protect the environment, vehicular ad-hoc networks have been introduced. Current developments in wireless communication, computing paradigms, big data, and cloud computing enable the enhancement of these networks, equipped with wireless communication capabilities and high-performance processing tools. Cloud-Based Big Data Analytics in Vehicular Ad-Hoc Networks is a pivotal reference source that provides vital research on cloud and data analytic applications in intelligent transportation systems. While highlighting topics such as location routing, accident detection, and data warehousing, this publication addresses future challenges in vehicular ad-hoc networks and presents viable solutions. This book is ideally designed for researchers, computer scientists, engineers, automobile industry professionals, IT practitioners, academicians, and students seeking current research on cloud computing models in vehicular networks.