[PDF] Perspectives On Noncommutative Geometry - eBooks Review

Perspectives On Noncommutative Geometry


Perspectives On Noncommutative Geometry
DOWNLOAD

Download Perspectives On Noncommutative Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Perspectives On Noncommutative Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Perspectives On Noncommutative Geometry


Perspectives On Noncommutative Geometry
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2012

Perspectives On Noncommutative Geometry written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Algebra, Homological categories.




Perspectives On Noncommutative Geometry


Perspectives On Noncommutative Geometry
DOWNLOAD
Author : Masoud Khalkhali
language : en
Publisher: American Mathematical Soc.
Release Date :

Perspectives On Noncommutative Geometry written by Masoud Khalkhali and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.




From Differential Geometry To Non Commutative Geometry And Topology


From Differential Geometry To Non Commutative Geometry And Topology
DOWNLOAD
Author : Neculai S. Teleman
language : en
Publisher: Springer Nature
Release Date : 2019-11-10

From Differential Geometry To Non Commutative Geometry And Topology written by Neculai S. Teleman and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-10 with Mathematics categories.


This book aims to provide a friendly introduction to non-commutative geometry. It studies index theory from a classical differential geometry perspective up to the point where classical differential geometry methods become insufficient. It then presents non-commutative geometry as a natural continuation of classical differential geometry. It thereby aims to provide a natural link between classical differential geometry and non-commutative geometry. The book shows that the index formula is a topological statement, and ends with non-commutative topology.



An Invitation To Noncommutative Geometry


An Invitation To Noncommutative Geometry
DOWNLOAD
Author : Masoud Khalkhali
language : en
Publisher: World Scientific
Release Date : 2008

An Invitation To Noncommutative Geometry written by Masoud Khalkhali and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Mathematics categories.


A walk in the noncommutative garden / A. Connes and M. Marcolli -- Renormalization of noncommutative quantum field theory / H. Grosse and R. Wulkenhaar -- Lectures on noncommutative geometry / M. Khalkhali -- Noncommutative bundles and instantons in Tehran / G. Landi and W. D. van Suijlekom -- Lecture notes on noncommutative algebraic geometry and noncommutative tori / S. Mahanta -- Lectures on derived and triangulated categories / B. Noohi -- Examples of noncommutative manifolds: complex tori and spherical manifolds / J. Plazas -- D-branes in noncommutative field theory / R. J. Szabo.



Noncommutative Geometry Quantum Fields And Motives


Noncommutative Geometry Quantum Fields And Motives
DOWNLOAD
Author : Alain Connes
language : en
Publisher: American Mathematical Soc.
Release Date : 2019-03-13

Noncommutative Geometry Quantum Fields And Motives written by Alain Connes and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-13 with Mathematics categories.


The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.



Quantum Field Theory And Noncommutative Geometry


Quantum Field Theory And Noncommutative Geometry
DOWNLOAD
Author : Ursula Carow-Watamura
language : en
Publisher: Springer
Release Date : 2005-04-25

Quantum Field Theory And Noncommutative Geometry written by Ursula Carow-Watamura and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-04-25 with Science categories.


This volume reflects the growing collaboration between mathematicians and theoretical physicists to treat the foundations of quantum field theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lectures and talks that have been given at a recent meeting on "Quantum Field Theory and Noncommutative Geometry." A considerable effort has been invested in making the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field.



Noncommutative Geometry And Particle Physics


Noncommutative Geometry And Particle Physics
DOWNLOAD
Author : Walter D. van Suijlekom
language : en
Publisher: Springer
Release Date : 2014-07-21

Noncommutative Geometry And Particle Physics written by Walter D. van Suijlekom and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-21 with Science categories.


This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.



Noncommutative Geometry


Noncommutative Geometry
DOWNLOAD
Author : Alain Connes
language : en
Publisher: Springer
Release Date : 2003-12-15

Noncommutative Geometry written by Alain Connes and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-12-15 with Mathematics categories.


Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.



An Introduction To Noncommutative Differential Geometry And Its Physical Applications


An Introduction To Noncommutative Differential Geometry And Its Physical Applications
DOWNLOAD
Author : J. Madore
language : en
Publisher: Cambridge University Press
Release Date : 1999-06-24

An Introduction To Noncommutative Differential Geometry And Its Physical Applications written by J. Madore and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-06-24 with Mathematics categories.


A thoroughly revised introduction to non-commutative geometry.



Basic Noncommutative Geometry


Basic Noncommutative Geometry
DOWNLOAD
Author : Masoud Khalkhali
language : en
Publisher: European Mathematical Society
Release Date : 2009

Basic Noncommutative Geometry written by Masoud Khalkhali and has been published by European Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Mathematics categories.


"Basic Noncommutative Geometry provides an introduction to noncommutative geometry and some of its applications. The book can be used either as a textbook for a graduate course on the subject or for self-study. It will be useful for graduate students and researchers in mathematics and theoretical physics and all those who are interested in gaining an understanding of the subject. One feature of this book is the wealth of examples and exercises that help the reader to navigate through the subject. While background material is provided in the text and in several appendices, some familiarity with basic notions of functional analysis, algebraic topology, differential geometry and homological algebra at a first year graduate level is helpful. Developed by Alain Connes since the late 1970s, noncommutative geometry has found many applications to long-standing conjectures in topology and geometry and has recently made headways in theoretical physics and number theory. The book starts with a detailed description of some of the most pertinent algebra-geometry correspondences by casting geometric notions in algebraic terms, then proceeds in the second chapter to the idea of a noncommutative space and how it is constructed. The last two chapters deal with homological tools: cyclic cohomology and Connes-Chern characters in K-theory and K-homology, culminating in one commutative diagram expressing the equality of topological and analytic index in a noncommutative setting. Applications to integrality of noncommutative topological invariants are given as well."--Publisher's description.