Polynomial Methods In Combinatorics

DOWNLOAD
Download Polynomial Methods In Combinatorics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Polynomial Methods In Combinatorics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Polynomial Methods In Combinatorics
DOWNLOAD
Author : Larry Guth
language : en
Publisher: American Mathematical Soc.
Release Date : 2016-06-10
Polynomial Methods In Combinatorics written by Larry Guth and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-10 with Mathematics categories.
This book explains some recent applications of the theory of polynomials and algebraic geometry to combinatorics and other areas of mathematics. One of the first results in this story is a short elegant solution of the Kakeya problem for finite fields, which was considered a deep and difficult problem in combinatorial geometry. The author also discusses in detail various problems in incidence geometry associated to Paul Erdős's famous distinct distances problem in the plane from the 1940s. The proof techniques are also connected to error-correcting codes, Fourier analysis, number theory, and differential geometry. Although the mathematics discussed in the book is deep and far-reaching, it should be accessible to first- and second-year graduate students and advanced undergraduates. The book contains approximately 100 exercises that further the reader's understanding of the main themes of the book.
Analytic Combinatorics
DOWNLOAD
Author : Philippe Flajolet
language : en
Publisher: Cambridge University Press
Release Date : 2009-01-15
Analytic Combinatorics written by Philippe Flajolet and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-01-15 with Mathematics categories.
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
Extremal Combinatorics
DOWNLOAD
Author : Stasys Jukna
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Extremal Combinatorics written by Stasys Jukna and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Computers categories.
Combinatorial mathematics has been pursued since time immemorial, and at a reasonable scientific level at least since Leonhard Euler (1707-1783). It ren dered many services to both pure and applied mathematics. Then along came the prince of computer science with its many mathematical problems and needs - and it was combinatorics that best fitted the glass slipper held out. Moreover, it has been gradually more and more realized that combinatorics has all sorts of deep connections with "mainstream areas" of mathematics, such as algebra, geometry and probability. This is why combinatorics is now apart of the standard mathematics and computer science curriculum. This book is as an introduction to extremal combinatorics - a field of com binatorial mathematics which has undergone aperiod of spectacular growth in recent decades. The word "extremal" comes from the nature of problems this field deals with: if a collection of finite objects (numbers, graphs, vectors, sets, etc. ) satisfies certain restrictions, how large or how small can it be? For example, how many people can we invite to a party where among each three people there are two who know each other and two who don't know each other? An easy Ramsey-type argument shows that at most five persons can attend such a party. Or, suppose we are given a finite set of nonzero integers, and are asked to mark an as large as possible subset of them under the restriction that the sum of any two marked integers cannot be marked.
Geometric Algorithms And Combinatorial Optimization
DOWNLOAD
Author : Martin Grötschel
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Geometric Algorithms And Combinatorial Optimization written by Martin Grötschel and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.
Combinatorial Commutative Algebra
DOWNLOAD
Author : Ezra Miller
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-06-21
Combinatorial Commutative Algebra written by Ezra Miller and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-06-21 with Mathematics categories.
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
Analytic Combinatorics In Several Variables
DOWNLOAD
Author : Robin Pemantle
language : en
Publisher: Cambridge University Press
Release Date : 2013-05-31
Analytic Combinatorics In Several Variables written by Robin Pemantle and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-31 with Mathematics categories.
Aimed at graduate students and researchers in enumerative combinatorics, this book is the first to treat the analytic aspects of combinatorial enumeration from a multivariate perspective.
Probabilistic Methods For Algorithmic Discrete Mathematics
DOWNLOAD
Author : Michel Habib
language : en
Publisher: Springer Science & Business Media
Release Date : 1998-08-19
Probabilistic Methods For Algorithmic Discrete Mathematics written by Michel Habib and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-08-19 with Computers categories.
The book gives an accessible account of modern pro- babilistic methods for analyzing combinatorial structures and algorithms. Each topic is approached in a didactic manner but the most recent developments are linked to the basic ma- terial. Extensive lists of references and a detailed index will make this a useful guide for graduate students and researchers. Special features included: - a simple treatment of Talagrand inequalities and their applications - an overview and many carefully worked out examples of the probabilistic analysis of combinatorial algorithms - a discussion of the "exact simulation" algorithm (in the context of Markov Chain Monte Carlo Methods) - a general method for finding asymptotically optimal or near optimal graph colouring, showing how the probabilistic method may be fine-tuned to explit the structure of the underlying graph - a succinct treatment of randomized algorithms and derandomization techniques
Combinatorics And Graph Theory
DOWNLOAD
Author : John Harris
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-04-03
Combinatorics And Graph Theory written by John Harris and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-03 with Mathematics categories.
There are certain rules that one must abide by in order to create a successful sequel. — Randy Meeks, from the trailer to Scream 2 While we may not follow the precise rules that Mr. Meeks had in mind for s- cessful sequels, we have made a number of changes to the text in this second edition. In the new edition, we continue to introduce new topics with concrete - amples, we provide complete proofs of almost every result, and we preserve the book’sfriendlystyle andlivelypresentation,interspersingthetextwith occasional jokes and quotations. The rst two chapters, on graph theory and combinatorics, remain largely independent, and may be covered in either order. Chapter 3, on in nite combinatorics and graphs, may also be studied independently, although many readers will want to investigate trees, matchings, and Ramsey theory for nite sets before exploring these topics for in nite sets in the third chapter. Like the rst edition, this text is aimed at upper-division undergraduate students in mathematics, though others will nd much of interest as well. It assumes only familiarity with basic proof techniques, and some experience with matrices and in nite series. The second edition offersmany additionaltopics for use in the classroom or for independentstudy. Chapter 1 includesa new sectioncoveringdistance andrelated notions in graphs, following an expanded introductory section. This new section also introduces the adjacency matrix of a graph, and describes its connection to important features of the graph.
Algebraic Combinatorics
DOWNLOAD
Author : Richard P. Stanley
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-17
Algebraic Combinatorics written by Richard P. Stanley and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-17 with Mathematics categories.
Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.
Combinatorial Methods With Computer Applications
DOWNLOAD
Author : Jonathan L. Gross
language : en
Publisher: CRC Press
Release Date : 2007-11-16
Combinatorial Methods With Computer Applications written by Jonathan L. Gross and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-16 with Mathematics categories.
Combinatorial Methods with Computer Applications provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. Requiring only a foundation in discrete mathematics, it can serve as the textbook in a combinatorial methods course or in a combined graph theory and combinatorics course. After an introduction to combinatorics, the book explores six systematic approaches within a comprehensive framework: sequences, solving recurrences, evaluating summation expressions, binomial coefficients, partitions and permutations, and integer methods. The author then focuses on graph theory, covering topics such as trees, isomorphism, automorphism, planarity, coloring, and network flows. The final chapters discuss automorphism groups in algebraic counting methods and describe combinatorial designs, including Latin squares, block designs, projective planes, and affine planes. In addition, the appendix supplies background material on relations, functions, algebraic systems, finite fields, and vector spaces. Paving the way for students to understand and perform combinatorial calculations, this accessible text presents the discrete methods necessary for applications to algorithmic analysis, performance evaluation, and statistics as well as for the solution of combinatorial problems in engineering and the social sciences.