[PDF] Practical Computer Vision - eBooks Review

Practical Computer Vision


Practical Computer Vision
DOWNLOAD

Download Practical Computer Vision PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Practical Computer Vision book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Practical Machine Learning For Computer Vision


Practical Machine Learning For Computer Vision
DOWNLOAD
Author : Valliappa Lakshmanan
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-07-21

Practical Machine Learning For Computer Vision written by Valliappa Lakshmanan and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-21 with Computers categories.


This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models



Practical Computer Vision


Practical Computer Vision
DOWNLOAD
Author : Abhinav Dadhich
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-02-05

Practical Computer Vision written by Abhinav Dadhich and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-05 with Computers categories.


A practical guide designed to get you from basics to current state of art in computer vision systems. Key Features Master the different tasks associated with Computer Vision and develop your own Computer Vision applications with ease Leverage the power of Python, Tensorflow, Keras, and OpenCV to perform image processing, object detection, feature detection and more With real-world datasets and fully functional code, this book is your one-stop guide to understanding Computer Vision Book Description In this book, you will find several recently proposed methods in various domains of computer vision. You will start by setting up the proper Python environment to work on practical applications. This includes setting up libraries such as OpenCV, TensorFlow, and Keras using Anaconda. Using these libraries, you'll start to understand the concepts of image transformation and filtering. You will find a detailed explanation of feature detectors such as FAST and ORB; you'll use them to find similar-looking objects. With an introduction to convolutional neural nets, you will learn how to build a deep neural net using Keras and how to use it to classify the Fashion-MNIST dataset. With regard to object detection, you will learn the implementation of a simple face detector as well as the workings of complex deep-learning-based object detectors such as Faster R-CNN and SSD using TensorFlow. You'll get started with semantic segmentation using FCN models and track objects with Deep SORT. Not only this, you will also use Visual SLAM techniques such as ORB-SLAM on a standard dataset. By the end of this book, you will have a firm understanding of the different computer vision techniques and how to apply them in your applications. What you will learn Learn the basics of image manipulation with OpenCV Implement and visualize image filters such as smoothing, dilation, histogram equalization, and more Set up various libraries and platforms, such as OpenCV, Keras, and Tensorflow, in order to start using computer vision, along with appropriate datasets for each chapter, such as MSCOCO, MOT, and Fashion-MNIST Understand image transformation and downsampling with practical implementations. Explore neural networks for computer vision and convolutional neural networks using Keras Understand working on deep-learning-based object detection such as Faster-R-CNN, SSD, and more Explore deep-learning-based object tracking in action Understand Visual SLAM techniques such as ORB-SLAM Who this book is for This book is for machine learning practitioners and deep learning enthusiasts who want to understand and implement various tasks associated with Computer Vision and image processing in the most practical manner possible. Some programming experience would be beneficial while knowing Python would be an added bonus.



Practical Computer Vision Applications Using Deep Learning With Cnns


Practical Computer Vision Applications Using Deep Learning With Cnns
DOWNLOAD
Author : Ahmed Fawzy Gad
language : en
Publisher: Apress
Release Date : 2018-12-05

Practical Computer Vision Applications Using Deep Learning With Cnns written by Ahmed Fawzy Gad and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-05 with Computers categories.


Deploy deep learning applications into production across multiple platforms. You will work on computer vision applications that use the convolutional neural network (CNN) deep learning model and Python. This book starts by explaining the traditional machine-learning pipeline, where you will analyze an image dataset. Along the way you will cover artificial neural networks (ANNs), building one from scratch in Python, before optimizing it using genetic algorithms. For automating the process, the book highlights the limitations of traditional hand-crafted features for computer vision and why the CNN deep-learning model is the state-of-art solution. CNNs are discussed from scratch to demonstrate how they are different and more efficient than the fully connected ANN (FCNN). You will implement a CNN in Python to give you a full understanding of the model. After consolidating the basics, you will use TensorFlow to build a practical image-recognition model that you will deploy to a web server using Flask, making it accessible over the Internet. Using Kivy and NumPy, you will create cross-platform data science applications with low overheads. This book will help you apply deep learning and computer vision concepts from scratch, step-by-step from conception to production. What You Will Learn Understand how ANNs and CNNs work Create computer vision applications and CNNs from scratch using Python Follow a deep learning project from conception to production using TensorFlow Use NumPy with Kivy to build cross-platform data science applications Who This Book Is ForData scientists, machine learning and deep learning engineers, software developers.



Practical Computer Vision With Simplecv


Practical Computer Vision With Simplecv
DOWNLOAD
Author : Kurt Demaagd
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2012

Practical Computer Vision With Simplecv written by Kurt Demaagd and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Computers categories.


Learn how to build your own computer vision (CV) applications quickly and easily with SimpleCV, an open source framework written in Python. Through examples of real-world applications, this hands-on guide introduces you to basic CV techniques for collecting, processing, and analyzing streaming digital images. You'll then learn how to apply these methods with SimpleCV, using sample Python code. All you need to get started is a Windows, Mac, or Linux system, and a willingness to put CV to work in a variety of ways. Programming experience is optional. Capture images from several sources, including webcams, smartphones, and Kinect Filter image input so your application processes only necessary information Manipulate images by performing basic arithmetic on pixel values Use feature detection techniques to focus on interesting parts of an image Work with several features in a single image, using the NumPy and SciPy Python libraries Learn about optical flow to identify objects that change between two image frames Use SimpleCV's command line and code editor to run examples and test techniques



Deep Learning For Coders With Fastai And Pytorch


Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29

Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.


Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala



Mastering Opencv With Practical Computer Vision Projects


Mastering Opencv With Practical Computer Vision Projects
DOWNLOAD
Author : Daniel Lélis Baggio
language : en
Publisher: Packt Publishing Ltd
Release Date : 2012-12-03

Mastering Opencv With Practical Computer Vision Projects written by Daniel Lélis Baggio and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-03 with Computers categories.


Each chapter in the book is an individual project and each project is constructed with step-by-step instructions, clearly explained code, and includes the necessary screenshots. You should have basic OpenCV and C/C++ programming experience before reading this book, as it is aimed at Computer Science graduates, researchers, and computer vision experts widening their expertise.



Practical Guide To Machine Vision Software


Practical Guide To Machine Vision Software
DOWNLOAD
Author : Kye-Si Kwon
language : en
Publisher: John Wiley & Sons
Release Date : 2014-11-17

Practical Guide To Machine Vision Software written by Kye-Si Kwon and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-17 with Computers categories.


For both students and engineers in R&D, this book explains machine vision in a concise, hands-on way, using the Vision Development Module of the LabView software by National Instruments. Following a short introduction to the basics of machine vision and the technical procedures of image acquisition, the book goes on to guide readers in the use of the various software functions of LabView's machine vision module. It covers typical machine vision tasks, including particle analysis, edge detection, pattern and shape matching, dimension measurements as well as optical character recognition, enabling readers to quickly and efficiently use these functions for their own machine vision applications. A discussion of the concepts involved in programming the Vision Development Module rounds off the book, while example problems and exercises are included for training purposes as well as to further explain the concept of machine vision. With its step-by-step guide and clear structure, this is an essential reference for beginners and experienced researchers alike.



Practical Opencv


Practical Opencv
DOWNLOAD
Author : Samarth Brahmbhatt
language : en
Publisher: Apress
Release Date : 2013-11-30

Practical Opencv written by Samarth Brahmbhatt and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-30 with Computers categories.


Practical OpenCV is a hands-on project book that shows you how to get the best results from OpenCV, the open-source computer vision library. Computer vision is key to technologies like object recognition, shape detection, and depth estimation. OpenCV is an open-source library with over 2500 algorithms that you can use to do all of these, as well as track moving objects, extract 3D models, and overlay augmented reality. It's used by major companies like Google (in its autonomous car), Intel, and Sony; and it is the backbone of the Robot Operating System’s computer vision capability. In short, if you're working with computer vision at all, you need to know OpenCV. With Practical OpenCV, you'll be able to: Get OpenCV up and running on Windows or Linux. Use OpenCV to control the camera board and run vision algorithms on Raspberry Pi. Understand what goes on behind the scenes in computer vision applications like object detection, image stitching, filtering, stereo vision, and more. Code complex computer vision projects for your class/hobby/robot/job, many of which can execute in real time on off-the-shelf processors. Combine different modules that you develop to create your own interactive computer vision app.



Practical Machine Learning And Image Processing


Practical Machine Learning And Image Processing
DOWNLOAD
Author : Himanshu Singh
language : en
Publisher: Apress
Release Date : 2019-02-26

Practical Machine Learning And Image Processing written by Himanshu Singh and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-26 with Computers categories.


Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms discussed in the book. You will then cover all the core image processing algorithms in detail before moving onto the biggest computer vision library: OpenCV. You’ll see the OpenCV algorithms and how to use them for image processing. The next section looks at advanced machine learning and deep learning methods for image processing and classification. You’ll work with concepts such as pulse coupled neural networks, AdaBoost, XG boost, and convolutional neural networks for image-specific applications. Later you’ll explore how models are made in real time and then deployed using various DevOps tools. All the conceptsin Practical Machine Learning and Image Processing are explained using real-life scenarios. After reading this book you will be able to apply image processing techniques and make machine learning models for customized application. What You Will Learn Discover image-processing algorithms and their applications using Python Explore image processing using the OpenCV library Use TensorFlow, scikit-learn, NumPy, and other libraries Work with machine learning and deep learning algorithms for image processing Apply image-processing techniques to five real-time projects Who This Book Is For Data scientists and software developers interested in image processing and computer vision.