Practical Computer Vision Applications Using Deep Learning With Cnns

DOWNLOAD
Download Practical Computer Vision Applications Using Deep Learning With Cnns PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Practical Computer Vision Applications Using Deep Learning With Cnns book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Practical Computer Vision Applications Using Deep Learning With Cnns
DOWNLOAD
Author : Ahmed Fawzy Gad
language : en
Publisher: Apress
Release Date : 2018-12-05
Practical Computer Vision Applications Using Deep Learning With Cnns written by Ahmed Fawzy Gad and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-05 with Computers categories.
Deploy deep learning applications into production across multiple platforms. You will work on computer vision applications that use the convolutional neural network (CNN) deep learning model and Python. This book starts by explaining the traditional machine-learning pipeline, where you will analyze an image dataset. Along the way you will cover artificial neural networks (ANNs), building one from scratch in Python, before optimizing it using genetic algorithms. For automating the process, the book highlights the limitations of traditional hand-crafted features for computer vision and why the CNN deep-learning model is the state-of-art solution. CNNs are discussed from scratch to demonstrate how they are different and more efficient than the fully connected ANN (FCNN). You will implement a CNN in Python to give you a full understanding of the model. After consolidating the basics, you will use TensorFlow to build a practical image-recognition model that you will deploy to a web server using Flask, making it accessible over the Internet. Using Kivy and NumPy, you will create cross-platform data science applications with low overheads. This book will help you apply deep learning and computer vision concepts from scratch, step-by-step from conception to production. What You Will Learn Understand how ANNs and CNNs work Create computer vision applications and CNNs from scratch using Python Follow a deep learning project from conception to production using TensorFlow Use NumPy with Kivy to build cross-platform data science applications Who This Book Is ForData scientists, machine learning and deep learning engineers, software developers.
Practical Computer Vision Applications Using Deep Learning With Cnns
DOWNLOAD
Author : Ahmed Fawzy Gad
language : en
Publisher: Apress
Release Date : 2019-01-07
Practical Computer Vision Applications Using Deep Learning With Cnns written by Ahmed Fawzy Gad and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-07 with Computers categories.
Deploy deep learning applications into production across multiple platforms. You will work on computer vision applications that use the convolutional neural network (CNN) deep learning model and Python. This book starts by explaining the traditional machine-learning pipeline, where you will analyze an image dataset. Along the way you will cover artificial neural networks (ANNs), building one from scratch in Python, before optimizing it using genetic algorithms. For automating the process, the book highlights the limitations of traditional hand-crafted features for computer vision and why the CNN deep-learning model is the state-of-art solution. CNNs are discussed from scratch to demonstrate how they are different and more efficient than the fully connected ANN (FCNN). You will implement a CNN in Python to give you a full understanding of the model. After consolidating the basics, you will use TensorFlow to build a practical image-recognition model that you will deploy to a web server using Flask, making it accessible over the Internet. Using Kivy and NumPy, you will create cross-platform data science applications with low overheads. This book will help you apply deep learning and computer vision concepts from scratch, step-by-step from conception to production. What You Will Learn Understand how ANNs and CNNs work Create computer vision applications and CNNs from scratch using Python Follow a deep learning project from conception to production using TensorFlow Use NumPy with Kivy to build cross-platform data science applications Who This Book Is ForData scientists, machine learning and deep learning engineers, software developers.
Learn Computer Vision Using Opencv
DOWNLOAD
Author : Sunila Gollapudi
language : en
Publisher: Apress
Release Date : 2019-04-26
Learn Computer Vision Using Opencv written by Sunila Gollapudi and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-26 with Computers categories.
Build practical applications of computer vision using the OpenCV library with Python. This book discusses different facets of computer vision such as image and object detection, tracking and motion analysis and their applications with examples. The author starts with an introduction to computer vision followed by setting up OpenCV from scratch using Python. The next section discusses specialized image processing and segmentation and how images are stored and processed by a computer. This involves pattern recognition and image tagging using the OpenCV library. Next, you’ll work with object detection, video storage and interpretation, and human detection using OpenCV. Tracking and motion is also discussed in detail. The book also discusses creating complex deep learning models with CNN and RNN. The author finally concludes with recent applications and trends in computer vision. After reading this book, you will be able to understand and implement computer vision and its applications with OpenCV using Python. You will also be able to create deep learning models with CNN and RNN and understand how these cutting-edge deep learning architectures work. What You Will Learn Understand what computer vision is, and its overall application in intelligent automation systems Discover the deep learning techniques required to build computer vision applications Build complex computer vision applications using the latest techniques in OpenCV, Python, and NumPy Create practical applications and implementations such as face detection and recognition, handwriting recognition, object detection, and tracking and motion analysis Who This Book Is ForThose who have a basic understanding of machine learning and Python and are looking to learn computer vision and its applications.
Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29
Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Hands On Convolutional Neural Networks With Tensorflow
DOWNLOAD
Author : Iffat Zafar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-28
Hands On Convolutional Neural Networks With Tensorflow written by Iffat Zafar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-28 with Computers categories.
Learn how to apply TensorFlow to a wide range of deep learning and Machine Learning problems with this practical guide on training CNNs for image classification, image recognition, object detection and many computer vision challenges. Key Features Learn the fundamentals of Convolutional Neural Networks Harness Python and Tensorflow to train CNNs Build scalable deep learning models that can process millions of items Book Description Convolutional Neural Networks (CNN) are one of the most popular architectures used in computer vision apps. This book is an introduction to CNNs through solving real-world problems in deep learning while teaching you their implementation in popular Python library - TensorFlow. By the end of the book, you will be training CNNs in no time! We start with an overview of popular machine learning and deep learning models, and then get you set up with a TensorFlow development environment. This environment is the basis for implementing and training deep learning models in later chapters. Then, you will use Convolutional Neural Networks to work on problems such as image classification, object detection, and semantic segmentation. After that, you will use transfer learning to see how these models can solve other deep learning problems. You will also get a taste of implementing generative models such as autoencoders and generative adversarial networks. Later on, you will see useful tips on machine learning best practices and troubleshooting. Finally, you will learn how to apply your models on large datasets of millions of images. What you will learn Train machine learning models with TensorFlow Create systems that can evolve and scale during their life cycle Use CNNs in image recognition and classification Use TensorFlow for building deep learning models Train popular deep learning models Fine-tune a neural network to improve the quality of results with transfer learning Build TensorFlow models that can scale to large datasets and systems Who this book is for This book is for Software Engineers, Data Scientists, or Machine Learning practitioners who want to use CNNs for solving real-world problems. Knowledge of basic machine learning concepts, linear algebra and Python will help.
Guide To Convolutional Neural Networks
DOWNLOAD
Author : Hamed Habibi Aghdam
language : en
Publisher: Springer
Release Date : 2017-05-17
Guide To Convolutional Neural Networks written by Hamed Habibi Aghdam and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-17 with Computers categories.
This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis. Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website. This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems.
Practical Computer Vision
DOWNLOAD
Author : Abhinav Dadhich
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-02-05
Practical Computer Vision written by Abhinav Dadhich and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-05 with Computers categories.
A practical guide designed to get you from basics to current state of art in computer vision systems. Key Features Master the different tasks associated with Computer Vision and develop your own Computer Vision applications with ease Leverage the power of Python, Tensorflow, Keras, and OpenCV to perform image processing, object detection, feature detection and more With real-world datasets and fully functional code, this book is your one-stop guide to understanding Computer Vision Book Description In this book, you will find several recently proposed methods in various domains of computer vision. You will start by setting up the proper Python environment to work on practical applications. This includes setting up libraries such as OpenCV, TensorFlow, and Keras using Anaconda. Using these libraries, you'll start to understand the concepts of image transformation and filtering. You will find a detailed explanation of feature detectors such as FAST and ORB; you'll use them to find similar-looking objects. With an introduction to convolutional neural nets, you will learn how to build a deep neural net using Keras and how to use it to classify the Fashion-MNIST dataset. With regard to object detection, you will learn the implementation of a simple face detector as well as the workings of complex deep-learning-based object detectors such as Faster R-CNN and SSD using TensorFlow. You'll get started with semantic segmentation using FCN models and track objects with Deep SORT. Not only this, you will also use Visual SLAM techniques such as ORB-SLAM on a standard dataset. By the end of this book, you will have a firm understanding of the different computer vision techniques and how to apply them in your applications. What you will learn Learn the basics of image manipulation with OpenCV Implement and visualize image filters such as smoothing, dilation, histogram equalization, and more Set up various libraries and platforms, such as OpenCV, Keras, and Tensorflow, in order to start using computer vision, along with appropriate datasets for each chapter, such as MSCOCO, MOT, and Fashion-MNIST Understand image transformation and downsampling with practical implementations. Explore neural networks for computer vision and convolutional neural networks using Keras Understand working on deep-learning-based object detection such as Faster-R-CNN, SSD, and more Explore deep-learning-based object tracking in action Understand Visual SLAM techniques such as ORB-SLAM Who this book is for This book is for machine learning practitioners and deep learning enthusiasts who want to understand and implement various tasks associated with Computer Vision and image processing in the most practical manner possible. Some programming experience would be beneficial while knowing Python would be an added bonus.
Modern Computer Vision With Pytorch
DOWNLOAD
Author : V Kishore Ayyadevara
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-11-27
Modern Computer Vision With Pytorch written by V Kishore Ayyadevara and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-27 with Computers categories.
Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions Key FeaturesImplement solutions to 50 real-world computer vision applications using PyTorchUnderstand the theory and working mechanisms of neural network architectures and their implementationDiscover best practices using a custom library created especially for this bookBook Description Deep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets. You’ll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You’ll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you’ll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You’ll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud. By the end of this book, you’ll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently. What you will learnTrain a NN from scratch with NumPy and PyTorchImplement 2D and 3D multi-object detection and segmentationGenerate digits and DeepFakes with autoencoders and advanced GANsManipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGANCombine CV with NLP to perform OCR, image captioning, and object detectionCombine CV with reinforcement learning to build agents that play pong and self-drive a carDeploy a deep learning model on the AWS server using FastAPI and DockerImplement over 35 NN architectures and common OpenCV utilitiesWho this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you’ll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.
Learning Deep Learning
DOWNLOAD
Author : Magnus Ekman
language : en
Publisher: Addison-Wesley Professional
Release Date : 2021-07-19
Learning Deep Learning written by Magnus Ekman and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-19 with Computers categories.
NVIDIA's Full-Color Guide to Deep Learning: All You Need to Get Started and Get Results "To enable everyone to be part of this historic revolution requires the democratization of AI knowledge and resources. This book is timely and relevant towards accomplishing these lofty goals." -- From the foreword by Dr. Anima Anandkumar, Bren Professor, Caltech, and Director of ML Research, NVIDIA "Ekman uses a learning technique that in our experience has proven pivotal to success—asking the reader to think about using DL techniques in practice. His straightforward approach is refreshing, and he permits the reader to dream, just a bit, about where DL may yet take us." -- From the foreword by Dr. Craig Clawson, Director, NVIDIA Deep Learning Institute Deep learning (DL) is a key component of today's exciting advances in machine learning and artificial intelligence. Learning Deep Learning is a complete guide to DL. Illuminating both the core concepts and the hands-on programming techniques needed to succeed, this book is ideal for developers, data scientists, analysts, and others--including those with no prior machine learning or statistics experience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers, Magnus Ekman shows how to use them to build advanced architectures, including the Transformer. He describes how these concepts are used to build modern networks for computer vision and natural language processing (NLP), including Mask R-CNN, GPT, and BERT. And he explains how a natural language translator and a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples using TensorFlow with Keras. Corresponding PyTorch examples are provided online, and the book thereby covers the two dominating Python libraries for DL used in industry and academia. He concludes with an introduction to neural architecture search (NAS), exploring important ethical issues and providing resources for further learning. Explore and master core concepts: perceptrons, gradient-based learning, sigmoid neurons, and back propagation See how DL frameworks make it easier to develop more complicated and useful neural networks Discover how convolutional neural networks (CNNs) revolutionize image classification and analysis Apply recurrent neural networks (RNNs) and long short-term memory (LSTM) to text and other variable-length sequences Master NLP with sequence-to-sequence networks and the Transformer architecture Build applications for natural language translation and image captioning NVIDIA's invention of the GPU sparked the PC gaming market. The company's pioneering work in accelerated computing--a supercharged form of computing at the intersection of computer graphics, high-performance computing, and AI--is reshaping trillion-dollar industries, such as transportation, healthcare, and manufacturing, and fueling the growth of many others. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Hands On Deep Learning For Images With Tensorflow
DOWNLOAD
Author : Will Ballard
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-07-31
Hands On Deep Learning For Images With Tensorflow written by Will Ballard and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-31 with Computers categories.
Explore TensorFlow's capabilities to perform efficient deep learning on images Key Features Discover image processing for machine vision Build an effective image classification system using the power of CNNs Leverage TensorFlow’s capabilities to perform efficient deep learning Book Description TensorFlow is Google’s popular offering for machine learning and deep learning, quickly becoming a favorite tool for performing fast, efficient, and accurate deep learning tasks. Hands-On Deep Learning for Images with TensorFlow shows you the practical implementations of real-world projects, teaching you how to leverage TensorFlow’s capabilities to perform efficient image processing using the power of deep learning. With the help of this book, you will get to grips with the different paradigms of performing deep learning such as deep neural nets and convolutional neural networks, followed by understanding how they can be implemented using TensorFlow. By the end of this book, you will have mastered all the concepts of deep learning and their implementation with TensorFlow and Keras. What you will learn Build machine learning models particularly focused on the MNIST digits Work with Docker and Keras to build an image classifier Understand natural language models to process text and images Prepare your dataset for machine learning Create classical, convolutional, and deep neural networks Create a RESTful image classification server Who this book is for Hands-On Deep Learning for Images with TensorFlow is for you if you are an application developer, data scientist, or machine learning practitioner looking to integrate machine learning into application software and master deep learning by implementing practical projects in TensorFlow. Knowledge of Python programming and basics of deep learning are required to get the best out of this book.