Practical Gradient Boosting A Deep Dive Into Gradient Boosting In Python

DOWNLOAD
Download Practical Gradient Boosting A Deep Dive Into Gradient Boosting In Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Practical Gradient Boosting A Deep Dive Into Gradient Boosting In Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Practical Gradient Boosting A Deep Dive Into Gradient Boosting In Python
DOWNLOAD
Author : Guillaume Saupin
language : en
Publisher: guillaume saupin
Release Date : 2022-10-17
Practical Gradient Boosting A Deep Dive Into Gradient Boosting In Python written by Guillaume Saupin and has been published by guillaume saupin this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-17 with Computers categories.
This book on Gradient Boosting methods is intended for students, academics, engineers, and data scientists who wish to discover in depth the functioning of this Machine Learning technique used to build decision tree ensembles. All the concepts are illustrated by examples of application code. They allow the reader to rebuild from scratch his own training library of Gradient Boosting methods. In parallel, the book presents the best practices of Data Science and provides the reader with a solid technical background to build Machine Learning models. After a presentation of the principles of Gradient Boosting citing the application cases, advantages and limitations, the reader is introduced to the details of the mathematical theory. A simple implementation is given to illustrate how it works. The reader is then armed to tackle the application and configuration of these methods. Data preparation, training, explanation of a model, management of Hyper Parameter Tuning and use of objective functions are covered in detail! The last chapters of the book extend the subject to the application of Gradient Boosting for time series, the presentation of the emblematic libraries XGBoost, CatBoost and LightGBM as well as the concept of multi-resolution models.
Mastering Time Series Analysis And Forecasting With Python Bridging Theory And Practice Through Insights Techniques And Tools For Effective Time Series Analysis In Python
DOWNLOAD
Author : Sulekha Aloorravi
language : en
Publisher: Orange Education Pvt Limited
Release Date : 2024-03-26
Mastering Time Series Analysis And Forecasting With Python Bridging Theory And Practice Through Insights Techniques And Tools For Effective Time Series Analysis In Python written by Sulekha Aloorravi and has been published by Orange Education Pvt Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-26 with Computers categories.
Decode the language of time with Python. Discover powerful techniques to analyze, forecast, and innovate. Key Features ● Dive into time series analysis fundamentals, progressing to advanced Python techniques. ● Gain practical expertise with real-world datasets and hands-on examples. ● Strengthen skills with code snippets, exercises, and projects for deeper understanding. Book Description "Mastering Time Series Analysis and Forecasting with Python" is an essential handbook tailored for those seeking to harness the power of time series data in their work. The book begins with foundational concepts and seamlessly guides readers through Python libraries such as Pandas, NumPy, and Plotly for effective data manipulation, visualization, and exploration. Offering pragmatic insights, it enables adept visualization, pattern recognition, and anomaly detection. Advanced discussions cover feature engineering and a spectrum of forecasting methodologies, including machine learning and deep learning techniques such as ARIMA, LSTM, and CNN. Additionally, the book covers multivariate and multiple time series forecasting, providing readers with a comprehensive understanding of advanced modeling techniques and their applications across diverse domains. Readers develop expertise in crafting precise predictive models and addressing real-world complexities. Complete with illustrative examples, code snippets, and hands-on exercises, this manual empowers readers to excel, make informed decisions, and derive optimal value from time series data. What you will learn ● Understand the fundamentals of time series data, including temporal patterns, trends, and seasonality. ● Proficiently utilize Python libraries such as pandas, NumPy, and matplotlib for efficient data manipulation and visualization. ● Conduct exploratory analysis of time series data, including identifying patterns, detecting anomalies, and extracting meaningful features. ● Build accurate and reliable predictive models using a variety of machine learning and deep learning techniques, including ARIMA, LSTM, and CNN. ● Perform multivariate and multiple time series forecasting, allowing for more comprehensive analysis and prediction across diverse datasets. ● Evaluate model performance using a range of metrics and validation techniques, ensuring the reliability and robustness of predictive models. Table of Contents 1. Introduction to Time Series 2. Overview of Time Series Libraries in Python 3. Visualization of Time Series Data 4. Exploratory Analysis of Time Series Data 5. Feature Engineering on Time Series 6. Time Series Forecasting – ML Approach Part 1 7. Time Series Forecasting – ML Approach Part 2 8. Time Series Forecasting - DL Approach 9. Multivariate Time Series, Metrics, and Validation Index
Machine Learning With Lightgbm And Python
DOWNLOAD
Author : Andrich van Wyk
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-09-29
Machine Learning With Lightgbm And Python written by Andrich van Wyk and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-29 with Computers categories.
Take your software to the next level and solve real-world data science problems by building production-ready machine learning solutions using LightGBM and Python Key Features Get started with LightGBM, a powerful gradient-boosting library for building ML solutions Apply data science processes to real-world problems through case studies Elevate your software by building machine learning solutions on scalable platforms Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMachine Learning with LightGBM and Python is a comprehensive guide to learning the basics of machine learning and progressing to building scalable machine learning systems that are ready for release. This book will get you acquainted with the high-performance gradient-boosting LightGBM framework and show you how it can be used to solve various machine-learning problems to produce highly accurate, robust, and predictive solutions. Starting with simple machine learning models in scikit-learn, you’ll explore the intricacies of gradient boosting machines and LightGBM. You’ll be guided through various case studies to better understand the data science processes and learn how to practically apply your skills to real-world problems. As you progress, you’ll elevate your software engineering skills by learning how to build and integrate scalable machine-learning pipelines to process data, train models, and deploy them to serve secure APIs using Python tools such as FastAPI. By the end of this book, you’ll be well equipped to use various -of-the-art tools that will help you build production-ready systems, including FLAML for AutoML, PostgresML for operating ML pipelines using Postgres, high-performance distributed training and serving via Dask, and creating and running models in the Cloud with AWS Sagemaker.What you will learn Get an overview of ML and working with data and models in Python using scikit-learn Explore decision trees, ensemble learning, gradient boosting, DART, and GOSS Master LightGBM and apply it to classification and regression problems Tune and train your models using AutoML with FLAML and Optuna Build ML pipelines in Python to train and deploy models with secure and performant APIs Scale your solutions to production readiness with AWS Sagemaker, PostgresML, and Dask Who this book is forThis book is for software engineers aspiring to be better machine learning engineers and data scientists unfamiliar with LightGBM, looking to gain in-depth knowledge of its libraries. Basic to intermediate Python programming knowledge is required to get started with the book. The book is also an excellent source for ML veterans, with a strong focus on ML engineering with up-to-date and thorough coverage of platforms such as AWS Sagemaker, PostgresML, and Dask.
Practical Fraud Prevention
DOWNLOAD
Author : Gilit Saporta
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2022-03-16
Practical Fraud Prevention written by Gilit Saporta and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-16 with Computers categories.
Over the past two decades, the booming ecommerce and fintech industries have become a breeding ground for fraud. Organizations that conduct business online are constantly engaged in a cat-and-mouse game with these invaders. In this practical book, Gilit Saporta and Shoshana Maraney draw on their fraud-fighting experience to provide best practices, methodologies, and tools to help you detect and prevent fraud and other malicious activities. Data scientists, data analysts, and fraud analysts will learn how to identify and quickly respond to attacks. You'll get a comprehensive view of typical incursions as well as recommended detection methods. Online fraud is constantly evolving. This book helps experienced researchers safely guide and protect their organizations in this ever-changing fraud landscape. With this book, you will: Examine current fraud attacks and learn how to mitigate them Find the right balance between preventing fraud and providing a smooth customer experience Share insights across multiple business areas, including ecommerce, banking, cryptocurrency, anti-money laundering, and ad tech Evaluate potential risks for a new vertical, market, or product Train and mentor teams by boosting collaboration and kickstarting brainstorming sessions Get a framework of fraud methods, fraud-fighting analytics, and data science methodologies
Learn Data Science From Scratch
DOWNLOAD
Author : Pratheerth Padman
language : en
Publisher: BPB Publications
Release Date : 2024-02-15
Learn Data Science From Scratch written by Pratheerth Padman and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-02-15 with Computers categories.
Turn raw data into meaningful solutions KEY FEATURES ● Complete guide to master data science basics. ● Practical and hands-on examples in ML, deep learning, and NLP. ● Drive innovation and improve decision making through the power of data. DESCRIPTION Learn Data Science from Scratch equips you with the essential tools and techniques, from Python libraries to machine learning algorithms, to tackle real-world problems and make informed decisions. This book provides a thorough exploration of essential data science concepts, tools, and techniques. Starting with the fundamentals of data science, you will progress through data collection, web scraping, data exploration and visualization, and data cleaning and pre-processing. You will build the required foundation in statistics and probability before diving into machine learning algorithms, deep learning, natural language processing, recommender systems, and data storage systems. With hands-on examples and practical advice, each chapter offers valuable insights and key takeaways, empowering you to master the art of data-driven decision making. By the end of this book, you will be well-equipped with the essential skills and knowledge to navigate the exciting world of data science. You will be able to collect, analyze, and interpret data, build and evaluate machine learning models, and effectively communicate your findings, making you a valuable asset in any data-driven environment. WHAT YOU WILL LEARN ● Master key data science tools like Python, NumPy, Pandas, and more. ● Build a strong foundation in statistics and probability for data analysis. ● Learn and apply machine learning, from regression to deep learning. ● Expertise in NLP and recommender systems for advanced analytics. ● End-to-end data project from data collection to model deployment, with planning and execution. WHO THIS BOOK IS FOR This book is ideal for beginners with a basic understanding of programming, particularly in Python, and a foundational knowledge of mathematics. It is well-suited for aspiring data scientists and analysts. TABLE OF CONTENTS 1. Unraveling the Data Science Universe: An Introduction 2. Essential Python Libraries and Tools for Data Science 3. Statistics and Probability Essentials for Data Science 4. Data Mining Expedition: Web Scraping and Data Collection Techniques 5. Painting with Data: Exploration and Visualization 6. Data Alchemy: Cleaning and Preprocessing Raw Data 7. Machine Learning Magic: An Introduction to Predictive Modeling 8. Exploring Regression: Linear, Logistic, and Advanced Methods 9. Unveiling Patterns with k-Nearest Neighbors and Naïve Bayes 10. Exploring Tree-Based Models: Decision Trees to Gradient Boosting 11. Support Vector Machines: Simplifying Complexity 12. Dimensionality Reduction: From PCA to Advanced Methods 13. Unlocking Unsupervised Learning 14. The Essence of Neural Networks and Deep Learning 15. Word Play: Text Analytics and Natural Language Processing 16. Crafting Recommender Systems 17. Data Storage Mastery: Databases and Efficient Data Management 18. Data Science in Action: A Comprehensive End-to-end Project
Practical Machine Learning With Python
DOWNLOAD
Author : Dipanjan Sarkar
language : en
Publisher: Apress
Release Date : 2017-12-20
Practical Machine Learning With Python written by Dipanjan Sarkar and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-20 with Computers categories.
Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully. Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries andframeworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today! What You'll Learn Execute end-to-end machine learning projects and systems Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks Review case studies depicting applications of machine learning and deep learning on diverse domains and industries Apply a wide range of machine learning models including regression, classification, and clustering. Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students
Customer Personality Analysis And Prediction Using Machine Learning With Python
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-07-01
Customer Personality Analysis And Prediction Using Machine Learning With Python written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-01 with Computers categories.
In this book, we embark on an exciting journey through the world of machine learning, where we explore the intricacies of working with datasets, visualizing their distributions, performing regression analysis, and predicting clusters. This book serves as a comprehensive guide for both beginners and experienced practitioners who are eager to delve into the realm of machine learning and discover the power of predictive analytics. Chapter 1 and Chapter 2 sets the stage by introducing the importance of data exploration. We learn how to understand the structure of a dataset, identify its features, and gain insights into the underlying patterns. Through various visualization techniques, we uncover the distribution of variables, detect outliers, and discover the relationships between different attributes. These exploratory analyses lay the foundation for the subsequent chapters, where we dive deeper into the realms of regression and cluster prediction. Chapter 3 focuses on regression analysis on number of total purchases, where we aim to predict continuous numerical values. By applying popular regression algorithms such as linear regression, random forest, naïve bayes, KNN, decision trees, support vector, Ada boost, gradient boosting, extreme gradient boosting, and light gradient boosting, we unlock the potential to forecast future trends and make data-driven decisions. Through real-world examples and practical exercises, we demonstrate the step-by-step process of model training, evaluation, and interpretation. We also discuss techniques to handle missing data, feature selection, and model optimization to ensure robust and accurate predictions. Chapter 4 sets our exploration of clustering customers, we embarked on a captivating journey that allowed us to uncover hidden patterns and gain valuable insights from our datasets. We began by understanding the importance of data exploration and visualization, which provided us with a comprehensive understanding of the distribution and relationships within the data. Moving forward, we delved into the realm of clustering, where our objective was to group similar data points together and identify underlying structures. By applying K-means clustering algorithm, we were able to unveil intricate patterns and extract meaningful insights. These techniques enabled us to tackle various real-world challenges, including customer personality analysis. Building upon the foundation of regression and cluster prediction, Chapter 5 delves into advanced topics, using machine learning models to predict cluster. We explore the power of logistic regression, random forest, naïve bayes, KNN, decision trees, support vector, Ada boost, gradient boosting, extreme gradient boosting, and light gradient boosting models to predict the clusters. Throughout the book, we emphasize a hands-on approach, providing practical code examples and interactive exercises to reinforce the concepts covered. By utilizing popular programming languages and libraries such as Python and scikit-learn, we ensure that readers gain valuable coding skills while exploring the diverse landscape of machine learning. Whether you are a data enthusiast, a business professional seeking insights from your data, or a student eager to enter the world of machine learning, this book equips you with the necessary tools and knowledge to embark on your own data-driven adventures. By the end of this journey, you will possess the skills and confidence to tackle real-world challenges, make informed decisions, and unlock the hidden potential of your data. So, let us embark on this exhilarating voyage through the intricacies of machine learning. Together, we will unravel the mysteries of datasets, harness the power of predictive analytics, and unlock a world of endless possibilities. Get ready to dive deep into the realm of machine learning and unleash the potential of your data. Welcome to the exciting world of predictive analytics!
Data Analytics
DOWNLOAD
Author : Anthony S. Williams
language : en
Publisher: Anthony S. Williams
Release Date :
Data Analytics written by Anthony S. Williams and has been published by Anthony S. Williams this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.
Data Analytics - 7 BOOK BUNDLE!! Book 1: Data Analytics For Beginners In this book you will learn: What is Data Analytics Types of Data Analytics Evolution of Data Analytics Big Data Defined Data Mining Data Visualization Cluster Analysis And of course much more! Book 2: Deep Learning With Keras In this book you will learn: Deep Neural Network Neural Network Elements Keras Models Sequential Model Functional API Model Keras Layers Core Keras Layers Convolutional Keras Layers Recurrent Keras Layers Deep Learning Algorithms Supervised Learning Algorithms Applications of Deep Learning Models Automatic Speech and Image Recognition Natural Language Processing And of course much more! Book 3: Analyzing Data With Power BI In this book you will learn: Basics of data analysis processes Fundamental data analysis algorithms Basic of data and text mining, data visualization, and business intelligence Techniques used for analysing quantitative data Basic data analysis tasks Conceptual, logical, and physical data models Power BI service and data modelling Creating reports and visualizations in Power BI And of course much more! Book 4: Reinforcement Learning With Python In this book you will learn: Types of fundamental machine learning algorithms in comparison to reinforcement learning Essentials of reinforcement learning process Marko decision processes and basic parameters How to integrate reinforcement learning algorithm using OpenAI Gym How to integrate Monte Carlo methods for prediction Monte Carlo tree search And much, much more... Book 5: Artificial Intelligence Python In this book you will learn: Different artificial intelligence approaches and goals How to define AI system Basic AI techniques Reinforcement learning And much, much more... Book 6: Text Analytics With Python In this book you will learn: Text analytics process How to build a corpus and analyze sentiment Named entity extraction with Groningen meaning bank corpus How to train your system Getting started with NLTK How to search syntax and tokenize sentences Automatic text summarization Stemming word and topic modeling with NLTK And much, much more... Book 7: Convolutional Neural Networks In Python In this book you will learn: Architecture of convolutional neural networks Solving computer vision tasks using convolutional neural networks Python and computer vision Automatic image and speech recognition Theano and TenroeFlow image recognition And of course much more! Download this book bundle NOW and SAVE money!!
Hands On Gradient Boosting With Xgboost And Scikit Learn
DOWNLOAD
Author : Corey Wade
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-10-16
Hands On Gradient Boosting With Xgboost And Scikit Learn written by Corey Wade and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-16 with Computers categories.
Get to grips with building robust XGBoost models using Python and scikit-learn for deployment Key Features Get up and running with machine learning and understand how to boost models with XGBoost in no time Build real-world machine learning pipelines and fine-tune hyperparameters to achieve optimal results Discover tips and tricks and gain innovative insights from XGBoost Kaggle winners Book Description XGBoost is an industry-proven, open-source software library that provides a gradient boosting framework for scaling billions of data points quickly and efficiently. The book introduces machine learning and XGBoost in scikit-learn before building up to the theory behind gradient boosting. You'll cover decision trees and analyze bagging in the machine learning context, learning hyperparameters that extend to XGBoost along the way. You'll build gradient boosting models from scratch and extend gradient boosting to big data while recognizing speed limitations using timers. Details in XGBoost are explored with a focus on speed enhancements and deriving parameters mathematically. With the help of detailed case studies, you'll practice building and fine-tuning XGBoost classifiers and regressors using scikit-learn and the original Python API. You'll leverage XGBoost hyperparameters to improve scores, correct missing values, scale imbalanced datasets, and fine-tune alternative base learners. Finally, you'll apply advanced XGBoost techniques like building non-correlated ensembles, stacking models, and preparing models for industry deployment using sparse matrices, customized transformers, and pipelines. By the end of the book, you'll be able to build high-performing machine learning models using XGBoost with minimal errors and maximum speed. What you will learn Build gradient boosting models from scratch Develop XGBoost regressors and classifiers with accuracy and speed Analyze variance and bias in terms of fine-tuning XGBoost hyperparameters Automatically correct missing values and scale imbalanced data Apply alternative base learners like dart, linear models, and XGBoost random forests Customize transformers and pipelines to deploy XGBoost models Build non-correlated ensembles and stack XGBoost models to increase accuracy Who this book is for This book is for data science professionals and enthusiasts, data analysts, and developers who want to build fast and accurate machine learning models that scale with big data. Proficiency in Python, along with a basic understanding of linear algebra, will help you to get the most out of this book.
Machine Learning Series
DOWNLOAD
Author : Dhiraj Kumar
language : en
Publisher:
Release Date : 2019
Machine Learning Series written by Dhiraj Kumar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.
Dhiraj, a data scientist and machine learning evangelist, continues his teaching of machine learning algorithms by explaining through both lecture and practice the XGBoost (eXtreme Gradient Boosting) Algorithm in Python. Click here to watch all of Dhiraj Kumar's machine learning videos . Learn all about XGBoost using Python and the Jupyter notebook in this video series covering these seven topics: Introducing XGBoost . This first topic in the XGBoost (eXtreme Gradient Boosting) Algorithm in Python series introduces this very important machine learning algorithm. Gradient boosting is a machine learning technique for regression and classification problems. Learn about the reasons for using XGBoost, including accuracy, speed, and scale. Understand ensemble modeling and how it can improve the overall performance of a machine learning model. Apply the concepts of bagging and boosting, and learn about AdaBoost and Gradient boosting. XGBoost Benefits . This second topic in the XGBoost Algorithm in Python series covers where XGBoost works well. XGBoost guarantees regularization (which prevents the model from overfitting), supports parallel processing, provides a built-in capacity for handling missing values, and excels at tree pruning and cross validation. Installing XGBoost . This third topic in the XGBoost Algorithm in Python series covers how to install the XGBoost library. It is recommended to be using Python 64 bit. Become proficient in installing Anaconda and the XGBoost library on Windows, Linux, and Mac OS. XGBoost Model Implementation in Python . This fourth topic in the XGBoost Algorithm in Python series covers how to implement the various XGBoost linear and tree learning models in Python. Practice applying the XGBoost models using a medical data set. XGBoost Parameter Tuning in Python . This fifth topic in the XGBoost Algorithm in Python series covers how to tune the various parameters that exist in Python. Parameter tuning is the art in machine learning. Follow along and practice applying the three categories of parameter tuning: Tree Parameters, Boosting Parameters, and Other Parameters. Become proficient in a number of parameters including max_depth, min_samples_leaf, and max_features, XGBoost Model Evaluation Method in Python . This sixth topic in the XGBoost Algorithm in Python series shows you how to evaluate an XGBoost model. Follow along and practice applying the two most important techniques of Train Test Split and Cross Validatio...