[PDF] Predictive Analytics With Neural Networks Using Matlab - eBooks Review

Predictive Analytics With Neural Networks Using Matlab


Predictive Analytics With Neural Networks Using Matlab
DOWNLOAD

Download Predictive Analytics With Neural Networks Using Matlab PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Predictive Analytics With Neural Networks Using Matlab book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Predictive Analytics With Neural Networks Using Matlab


Predictive Analytics With Neural Networks Using Matlab
DOWNLOAD
Author : CESAR PEREZ LOPEZ
language : en
Publisher: CESAR PEREZ
Release Date : 2020-09-06

Predictive Analytics With Neural Networks Using Matlab written by CESAR PEREZ LOPEZ and has been published by CESAR PEREZ this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-06 with Computers categories.


Predictive analytics encompasses a variety of statistical techniques from predictive modeling, machine learning, and data mining that analyze current and historical facts to make predictions about future or otherwise unknown events. Different work fields with neural networks and predictive analytics techniques are listed below: The multilayer perceptron (MLP), A radial basis function (RBF), Support vector machines (SVM), Fit regression models with neural networks, Time series neural networks, Hopfield and linear neural networks, Generalized regression and LVQ neural networks, Adaptative linear filters and non linear problems



Predictive Analytics With Neural Networks Using Matlab


Predictive Analytics With Neural Networks Using Matlab
DOWNLOAD
Author : Perez Lopez Cesar Perez Lopez
language : en
Publisher:
Release Date : 2020

Predictive Analytics With Neural Networks Using Matlab written by Perez Lopez Cesar Perez Lopez and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.




Predictive Analytics With Neural Networks Using Matlab


Predictive Analytics With Neural Networks Using Matlab
DOWNLOAD
Author : J. Smith
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2017-02-27

Predictive Analytics With Neural Networks Using Matlab written by J. Smith and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-27 with categories.


Predictive analytics encompasses a variety of statistical techniques from predictive modeling, machine learning, and data mining that analyze current and historical facts to make predictions about future or otherwise unknown events. In business, predictive models exploit patterns found in historical and transactional data to identify risks and opportunities. Models capture relationships among many factors to allow assessment of risk or potential associated with a particular set of conditions, guiding decision making for candidate transactions. The defining functional effect of these technical approaches is that predictive analytics provides a predictive score (probability) for each individual (customer, employee, healthcare patient, product SKU, vehicle, component, machine, or other organizational unit) in order to determine, inform, or influence organizational processes that pertain across large numbers of individuals, such as in marketing, credit risk assessment, fraud detection, manufacturing, healthcare, and government operations including law enforcement. Predictive analytics is used in actuarial science, marketing, financial services, insurance, telecommunications, retail, travel, healthcare, child protection, pharmaceuticals, capacity planning and other fields. One of the best-known applications is credit scoring, which is used throughout financial services. Scoring models process a customer's credit history, loan application, customer data, etc., in order to rank-order individuals by their likelihood of making future credit payments on time. Neural networks are nonlinear sophisticated modeling techniques that are able to model complex functions. They can be applied to problems of prediction, classification or control in a wide spectrum of fields such as finance, cognitive psychology/neuroscience, medicine, engineering, and physics. Neural networks are used when the exact nature of the relationship between inputs and output is not known. A key feature of neural networks is that they learn the relationship between inputs and output through training. There are three types of training used by different neural networks: supervised and unsupervised training and reinforcement learning, with supervised being the most common one. Some examples of neural network training techniques are backpropagation, quick propagation, conjugate gradient descent, projection operator, Delta-Bar-Delta etc. Some unsupervised network architectures are multilayer perceptrons, Kohonen networks, Hopfield networks, etc. Different work fields with neural networks and predictive analytics techniques are developed in this book: -The multilayer perceptron (MLP) -A radial basis function (RBF) i -Fit regression models with neural networks. -Time series neural networks. Modeling and prediction with NARX and time delay networks. -Hopfield and linear neural networks. -Generalized regression and LVQ neural networks. -Adaptative linear filters and non linear problems. Used for linear and nonlinear prediction



Machine Learning With Neural Networks Using Matlab


Machine Learning With Neural Networks Using Matlab
DOWNLOAD
Author : J. Smith
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2017-02-27

Machine Learning With Neural Networks Using Matlab written by J. Smith and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-27 with MATLAB. categories.


Machine Learning is a method used to devise complex models and algorithms that lend themselves to prediction; in commercial use, this is known as predictive analytics. These analytical models allow researchers, data scientists, engineers, and analysts to produce reliable, repeatable decisions and results" and uncover "hidden insights" through learning from historical relationships and trends in the data. MATLAB has the tool Neural Network Toolbox that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, dynamic system modeling and control and most machine learning techniques. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox. The more important features are the following: -Deep learning, including convolutional neural networks and autoencoders -Parallel computing and GPU support for accelerating training (with Parallel Computing Toolbox) -Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN) -Unsupervised learning algorithms, including self-organizing maps and competitive layers -Apps for data-fitting, pattern recognition, and clustering -Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance -Simulink(R) blocks for building and evaluating neural networks and for control systems applications



Predictive Analytics Using Matlab R For Biomedical Applications


Predictive Analytics Using Matlab R For Biomedical Applications
DOWNLOAD
Author : L. Ashok Kumar
language : en
Publisher: Elsevier
Release Date : 2024-10-03

Predictive Analytics Using Matlab R For Biomedical Applications written by L. Ashok Kumar and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-03 with Science categories.


Predictive Analytics using MATLAB(R) for Biomedical Applications is a comprehensive and practical guide for biomedical engineers, data scientists, and researchers on how to use predictive analytics techniques in MATLAB(R) for solving real-world biomedical problems. The book offers a technical overview of various predictive analytics methods and covers the utilization of MATLAB(R) for implementing these techniques. It includes several case studies that demonstrate how predictive analytics can be applied to real-world biomedical problems, such as predicting disease progression, analyzing medical imaging data, and optimizing treatment outcomes.With a plethora of examples and exercises, this book is the ultimate tool for reinforcing one's knowledge and skills. - Covers various predictive analytics methods, including regression analysis, time series analysis, and machine learning algorithms, providing readers with a comprehensive understanding of the field - Provides a hands-on approach to learning predictive analytics, with a focus on practical applications in biomedical engineering - Includes several case studies that demonstrate the practical application of predictive analytics in real-world biomedical problems, such as disease progression prediction, medical imaging analysis, and treatment optimization



Big Data Analytics Neural Networks Applications Examples With Matlab


Big Data Analytics Neural Networks Applications Examples With Matlab
DOWNLOAD
Author : CESAR PEREZ LOPEZ
language : en
Publisher: CESAR PEREZ
Release Date : 2020-05-31

Big Data Analytics Neural Networks Applications Examples With Matlab written by CESAR PEREZ LOPEZ and has been published by CESAR PEREZ this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-31 with Computers categories.


MATLAB has the tool Neural Network Toolbox (Deep Learning Toolbox since release 18) that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox. This book develops neural network applications using MATLAB.



Big Data Analytics With Neural Networks Using Matlab


Big Data Analytics With Neural Networks Using Matlab
DOWNLOAD
Author : J. Smith
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2017-02-26

Big Data Analytics With Neural Networks Using Matlab written by J. Smith and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-26 with Big data categories.


Big data analytics is the process of collecting, organizing and analyzing large sets of data (called big data) to discover patterns and other useful information. Big data analytics can help organizations to better understand the information contained within the data and will also help identify the data that is most important to the business and future business decisions. Analysts working with big data basically want the knowledge that comes from analyzing the data. To analyze such a large volume of data, big data analytics is typically performed using specialized software tools and applications for predictive analytics, data mining, text mining, forecasting and data optimization. Collectively these processes are separate but highly integrated functions of high-performance analytics. Using big data tools and software enables an organization to process extremely large volumes of data that a business has collected to determine which data is relevant and can be analyzed to drive better business decisions in the future. Among all these tools highlights MATLAB. MATLAB implements various toolboxes for working on big data analytics, such as Statistics Toolbox and Neural Network Toolbox. This book develops Big Data Analytics applications using MATLAB Neural Network Toolboox. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox. The more important features are the following: - Deep learning, including convolutional neural networks and autoencoders - Parallel computing and GPU support for accelerating training (with Parallel Computing Toolbox) - Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN) - Unsupervised learning algorithms, including self-organizing maps and competitive layers - Apps for data-fitting, pattern recognition, and clustering - Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance - Simulink(R) blocks for building and evaluating neural networks and for control systems applications Neural networks are composed of simple elements operating in parallel. These elements are inspired by biological nervous systems. As in nature, the connections between elements largely determine the network function. You can train a neural network to perform a particular function by adjusting the values of the connections (weights) between elements.



Predictive Analytics With Matlab Regression And Neural Networks


Predictive Analytics With Matlab Regression And Neural Networks
DOWNLOAD
Author : J. Smith
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2017-04-18

Predictive Analytics With Matlab Regression And Neural Networks written by J. Smith and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-18 with categories.


Predictive analytics is an area of statistics that deals with extracting information from data and using it to predict trends and behavior patterns. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future. For example, identifying suspects after a crime has been committed, or credit card fraud as it occurs. The core of predictive analytics relies on capturing relationships between explanatory variables and the predicted variables from past occurrences, and exploiting them to predict the unknown outcome. It is important to note, however, that the accuracy and usability of results will depend greatly on the level of data analysis and the quality of assumptions. This books develops the more important predictive models like Regression Models, Generalized Regression Models, Discrete Choice Models, Logit and Probit Models, Support Vector Machine Regression, Gaussian Process Regresion, Regression Trees, Regression Models with Neural Networks and Neural Networks Time Series Prediction.



Matlab For Machine Learning


Matlab For Machine Learning
DOWNLOAD
Author : Giuseppe Ciaburro
language : en
Publisher:
Release Date : 2017-08-24

Matlab For Machine Learning written by Giuseppe Ciaburro and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-24 with categories.


Extract patterns and knowledge from your data in easy way using MATLABAbout This Book* Get your first steps into machine learning with the help of this easy-to-follow guide* Learn regression, clustering, classification, predictive analytics, artificial neural networks and more with MATLAB* Understand how your data works and identify hidden layers in the data with the power of machine learning.Who This Book Is ForThis book is for data analysts, data scientists, students, or anyone who is looking to get started with machine learning and want to build efficient data processing and predicting applications. A mathematical and statistical background will really help in following this book well.What You Will Learn* Learn the introductory concepts of machine learning.* Discover different ways to transform data using SAS XPORT, import and export tools,* Explore the different types of regression techniques such as simple & multiple linear regression, ordinary least squares estimation, correlations and how to apply them to your data.* Discover the basics of classification methods and how to implement Naive Bayes algorithm and Decision Trees in the Matlab environment.* Uncover how to use clustering methods like hierarchical clustering to grouping data using the similarity measures.* Know how to perform data fitting, pattern recognition, and clustering analysis with the help of MATLAB Neural Network Toolbox.* Learn feature selection and extraction for dimensionality reduction leading to improved performance.In DetailMATLAB is the language of choice for many researchers and mathematics experts for machine learning. This book will help you build a foundation in machine learning using MATLAB for beginners.You'll start by getting your system ready with t he MATLAB environment for machine learning and you'll see how to easily interact with the Matlab workspace. We'll then move on to data cleansing, mining and analyzing various data types in machine learning and you'll see how to display data values on a plot. Next, you'll get to know about the different types of regression techniques and how to apply them to your data using the MATLAB functions.You'll understand the basic concepts of neural networks and perform data fitting, pattern recognition, and clustering analysis. Finally, you'll explore feature selection and extraction techniques for dimensionality reduction for performance improvement.At the end of the book, you will learn to put it all together into real-world cases covering major machine learning algorithms and be comfortable in performing machine learning with MATLAB.Style and approachThe book takes a very comprehensive approach to enhance your understanding of machine learning using MATLAB. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work.



Modeling Solar Radiation At The Earth S Surface


Modeling Solar Radiation At The Earth S Surface
DOWNLOAD
Author : Viorel Badescu
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-02-01

Modeling Solar Radiation At The Earth S Surface written by Viorel Badescu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-02-01 with Technology & Engineering categories.


Solar radiation data is important for a wide range of applications, e.g. in engineering, agriculture, health sector, and in many fields of the natural sciences. A few examples showing the diversity of applications may include: architecture and building design, e.g. air conditioning and cooling systems; solar heating system design and use; solar power generation; evaporation and irrigation; calculation of water requirements for crops; monitoring plant growth and disease control; skin cancer research.