[PDF] Principles Of Nonparametric Learning - eBooks Review

Principles Of Nonparametric Learning


Principles Of Nonparametric Learning
DOWNLOAD

Download Principles Of Nonparametric Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Principles Of Nonparametric Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Principles Of Nonparametric Learning


Principles Of Nonparametric Learning
DOWNLOAD
Author : Laszlo Györfi
language : en
Publisher: Springer
Release Date : 2014-05-04

Principles Of Nonparametric Learning written by Laszlo Györfi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-04 with Technology & Engineering categories.


The book provides systematic in-depth analysis of nonparametric learning. It covers the theoretical limits and the asymptotical optimal algorithms and estimates, such as pattern recognition, nonparametric regression estimation, universal prediction, vector quantization, distribution and density estimation and genetic programming. The book is mainly addressed to postgraduates in engineering, mathematics, computer science, and researchers in universities and research institutions.



Nonparametric And Semiparametric Models


Nonparametric And Semiparametric Models
DOWNLOAD
Author : Wolfgang Karl Härdle
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-08-27

Nonparametric And Semiparametric Models written by Wolfgang Karl Härdle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-27 with Mathematics categories.


The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.



Learning Theory


Learning Theory
DOWNLOAD
Author : Hans Ulrich Simon
language : en
Publisher: Springer
Release Date : 2006-09-29

Learning Theory written by Hans Ulrich Simon and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-09-29 with Computers categories.


This book constitutes the refereed proceedings of the 19th Annual Conference on Learning Theory, COLT 2006, held in Pittsburgh, Pennsylvania, USA, June 2006. The book presents 43 revised full papers together with 2 articles on open problems and 3 invited lectures. The papers cover a wide range of topics including clustering, un- and semi-supervised learning, statistical learning theory, regularized learning and kernel methods, query learning and teaching, inductive inference, and more.



The Principles Of Deep Learning Theory


The Principles Of Deep Learning Theory
DOWNLOAD
Author : Daniel A. Roberts
language : en
Publisher: Cambridge University Press
Release Date : 2022-05-26

The Principles Of Deep Learning Theory written by Daniel A. Roberts and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-26 with Computers categories.


This volume develops an effective theory approach to understanding deep neural networks of practical relevance.



Data Driven Nonparametric Adaptive Control Theory


Data Driven Nonparametric Adaptive Control Theory
DOWNLOAD
Author : Andrew J. Kurdila
language : en
Publisher: Springer Nature
Release Date : 2025-05-10

Data Driven Nonparametric Adaptive Control Theory written by Andrew J. Kurdila and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-10 with Science categories.


Data-Driven, Nonparametric, Adaptive Control Theory introduces a novel approach to the control of deterministic, nonlinear ordinary differential equations affected by uncertainties. The methods proposed enforce satisfactory trajectory tracking despite functional uncertainties in the plant model. The book employs the properties of reproducing kernel Hilbert (native) spaces to characterize both the functional space of uncertainties and the controller's performance. Classical control systems are extended to broader classes of problems and more informative characterizations of the controllers’ performances are attained. Following an examination of how backstepping control and robust control Lyapunov functions can be ported to the native setting, numerous extensions of the model reference adaptive control framework are considered. The authors’ approach breaks away from classical paradigms in which uncertain nonlinearities are parameterized using a regressor vector provided a priori or reconstructed online. The problem of distributing the kernel functions that characterize the native space is addressed at length by employing data-driven methods in deterministic and stochastic settings. The first part of this book is a self-contained resource, systematically presenting elements of real analysis, functional analysis, and native space theory. The second part is an exposition of the theory of nonparametric control systems design. The text may be used as a self-study book for researchers and practitioners and as a reference for graduate courses in advanced control systems design. MATLAB® codes, available on the authors’ website, and suggestions for homework assignments help readers appreciate the implementation of the theoretical results.



Randomized Algorithms For Analysis And Control Of Uncertain Systems


Randomized Algorithms For Analysis And Control Of Uncertain Systems
DOWNLOAD
Author : Roberto Tempo
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-10-21

Randomized Algorithms For Analysis And Control Of Uncertain Systems written by Roberto Tempo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-21 with Technology & Engineering categories.


The presence of uncertainty in a system description has always been a critical issue in control. The main objective of Randomized Algorithms for Analysis and Control of Uncertain Systems, with Applications (Second Edition) is to introduce the reader to the fundamentals of probabilistic methods in the analysis and design of systems subject to deterministic and stochastic uncertainty. The approach propounded by this text guarantees a reduction in the computational complexity of classical control algorithms and in the conservativeness of standard robust control techniques. The second edition has been thoroughly updated to reflect recent research and new applications with chapters on statistical learning theory, sequential methods for control and the scenario approach being completely rewritten. Features: · self-contained treatment explaining Monte Carlo and Las Vegas randomized algorithms from their genesis in the principles of probability theory to their use for system analysis; · development of a novel paradigm for (convex and nonconvex) controller synthesis in the presence of uncertainty and in the context of randomized algorithms; · comprehensive treatment of multivariate sample generation techniques, including consideration of the difficulties involved in obtaining identically and independently distributed samples; · applications of randomized algorithms in various endeavours, such as PageRank computation for the Google Web search engine, unmanned aerial vehicle design (both new in the second edition), congestion control of high-speed communications networks and stability of quantized sampled-data systems. Randomized Algorithms for Analysis and Control of Uncertain Systems (second edition) is certain to interest academic researchers and graduate control students working in probabilistic, robust or optimal control methods and control engineers dealing with system uncertainties. The present book is a very timely contribution to the literature. I have no hesitation in asserting that it will remain a widely cited reference work for many years. M. Vidyasagar



From Data And Information Analysis To Knowledge Engineering


From Data And Information Analysis To Knowledge Engineering
DOWNLOAD
Author : Myra Spiliopoulou
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-02-09

From Data And Information Analysis To Knowledge Engineering written by Myra Spiliopoulou and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-02-09 with Language Arts & Disciplines categories.


This volume collects revised versions of papers presented at the 29th Annual Conference of the Gesellschaft für Klassifikation, the German Classification Society, held at the Otto-von-Guericke-University of Magdeburg, Germany, in March 2005. In addition to traditional subjects like Classification, Clustering, and Data Analysis, converage extends to a wide range of topics relating to Computer Science: Text Mining, Web Mining, Fuzzy Data Analysis, IT Security, Adaptivity and Personalization, and Visualization.



Smoothing Of Multivariate Data


Smoothing Of Multivariate Data
DOWNLOAD
Author : Jussi Sakari Klemelä
language : en
Publisher: John Wiley & Sons
Release Date : 2009-09-04

Smoothing Of Multivariate Data written by Jussi Sakari Klemelä and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-04 with Mathematics categories.


An applied treatment of the key methods and state-of-the-art tools for visualizing and understanding statistical data Smoothing of Multivariate Data provides an illustrative and hands-on approach to the multivariate aspects of density estimation, emphasizing the use of visualization tools. Rather than outlining the theoretical concepts of classification and regression, this book focuses on the procedures for estimating a multivariate distribution via smoothing. The author first provides an introduction to various visualization tools that can be used to construct representations of multivariate functions, sets, data, and scales of multivariate density estimates. Next, readers are presented with an extensive review of the basic mathematical tools that are needed to asymptotically analyze the behavior of multivariate density estimators, with coverage of density classes, lower bounds, empirical processes, and manipulation of density estimates. The book concludes with an extensive toolbox of multivariate density estimators, including anisotropic kernel estimators, minimization estimators, multivariate adaptive histograms, and wavelet estimators. A completely interactive experience is encouraged, as all examples and figurescan be easily replicated using the R software package, and every chapter concludes with numerous exercises that allow readers to test their understanding of the presented techniques. The R software is freely available on the book's related Web site along with "Code" sections for each chapter that provide short instructions for working in the R environment. Combining mathematical analysis with practical implementations, Smoothing of Multivariate Data is an excellent book for courses in multivariate analysis, data analysis, and nonparametric statistics at the upper-undergraduate and graduatelevels. It also serves as a valuable reference for practitioners and researchers in the fields of statistics, computer science, economics, and engineering.



Data Depth


Data Depth
DOWNLOAD
Author : Regina Y. Liu
language : en
Publisher: American Mathematical Soc.
Release Date :

Data Depth written by Regina Y. Liu and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.


The book is a collection of some of the research presented at the workshop of the same name held in May 2003 at Rutgers University. The workshop brought together researchers from two different communities: statisticians and specialists in computational geometry. The main idea unifying these two research areas turned out to be the notion of data depth, which is an important notion both in statistics and in the study of efficiency of algorithms used in computational geometry. Many ofthe articles in the book lay down the foundations for further collaboration and interdisciplinary research. Information for our distributors: Co-published with the Center for Discrete Mathematics and Theoretical Computer Science beginning with Volume 8. Volumes 1-7 were co-published with theAssociation for Computer Machinery (ACM).



Greedy Approximation


Greedy Approximation
DOWNLOAD
Author : Vladimir Temlyakov
language : en
Publisher: Cambridge University Press
Release Date : 2011-09-08

Greedy Approximation written by Vladimir Temlyakov and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-08 with Computers categories.


This first book on greedy approximation gives a systematic presentation of the fundamental results. It also contains an introduction to two hot topics in numerical mathematics: learning theory and compressed sensing. Nonlinear approximation is becoming increasingly important, especially since two types are frequently employed in applications: adaptive methods are used in PDE solvers, while m-term approximation is used in image/signal/data processing, as well as in the design of neural networks. The fundamental question of nonlinear approximation is how to devise good constructive methods (algorithms) and recent results have established that greedy type algorithms may be the solution. The author has drawn on his own teaching experience to write a book ideally suited to graduate courses. The reader does not require a broad background to understand the material. Important open problems are included to give students and professionals alike ideas for further research.