[PDF] Quantitative Spectroscopy Of Reliability Limiting Traps In Operational Gallium Nitride Based Transistors Using Thermal And Optical Methods - eBooks Review

Quantitative Spectroscopy Of Reliability Limiting Traps In Operational Gallium Nitride Based Transistors Using Thermal And Optical Methods


Quantitative Spectroscopy Of Reliability Limiting Traps In Operational Gallium Nitride Based Transistors Using Thermal And Optical Methods
DOWNLOAD

Download Quantitative Spectroscopy Of Reliability Limiting Traps In Operational Gallium Nitride Based Transistors Using Thermal And Optical Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quantitative Spectroscopy Of Reliability Limiting Traps In Operational Gallium Nitride Based Transistors Using Thermal And Optical Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Quantitative Spectroscopy Of Reliability Limiting Traps In Operational Gallium Nitride Based Transistors Using Thermal And Optical Methods


Quantitative Spectroscopy Of Reliability Limiting Traps In Operational Gallium Nitride Based Transistors Using Thermal And Optical Methods
DOWNLOAD
Author : Anup Sasikumar
language : en
Publisher:
Release Date : 2014

Quantitative Spectroscopy Of Reliability Limiting Traps In Operational Gallium Nitride Based Transistors Using Thermal And Optical Methods written by Anup Sasikumar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with categories.


Gallium nitride (GaN) based high electron mobility transistors (HEMTs) have shown a lot of promise in high voltage, high power, and high radiation applications. However the full realization of the III-nitride potential and large scale adoption of this technology has been hindered by the existence of electrically active defects that manifest as deep levels in the energy bandgap. These deep levels can potentially act as charge trapping centers limiting device performance and long term reliability. It is therefore imperative to monitor these traps in operational GaN HEMTs as close as possible to their real world operational conditions. With that goal in mind, in this dissertation, a suite of advanced thermal and optical based trap spectroscopy methods and models collectively known as constant drain current deep level (thermal) transient spectroscopy and deep level optical spectroscopy (CID-DLTS/DLOS) were developed and expanded upon to directly probe and track traps in three terminal operational GaN HEMTs. These techniques have allowed an unprecedented ability to quantitatively track trap levels throughout the wide bandgap of operational GaN devices. Depending on their mode of switching (gate-controlled versus drain-controlled) the techniques are able to distinguish between under gate and access region defects irrespective of device design and/or operational history. The devices studied here were subjected to a range of different stressors and very different trap induced degradation mechanisms were identified that further confirms the need for such high resolution defect spectroscopic studies in GaN HEMTs. Specifically the GaN HEMTs studied here were subjected to three very different kinds of stressors, i) high frequency moderate drain voltage (50 V) accelerated lifetime stressor were applied to GaN HEMTs optimized for radio frequency (RF) applications, ii) very high off-state drain voltage (up to 600 V) stressors were applied to GaN-on-Si MISHEMTs optimized for power switching applications, and iii) high energy particle irradiation (in this case 1.8 MeV protons) stressor applied to high frequency GaN HEMTs targeted for RF space applications. In the case of the RF accelerated electrical life testing, the GaN HEMTs over an array of different suppliers (mostly commercial) showed the signature of a EC-0.57 eV trap that was was identified as occurring almost ubiquitously. This trap was determined to be causing knee-walkout degradation, drain-lag and linked directly to RF output power loss through its trapping/detrapping activity in the drain access region. This level was unambiguously located in the GaN buffer using a combination of CID-DLTS, and supporting nano-scale DLTS/DLOS approaches. It was observed that the detection of this buffer trap was observed to be highly dependent on the reverse gate leakage of the GaN HEMTs and an empirical leakage based filling model was proposed to describe the electron capture process in HEMTs with leakage (10-7 A/mm). In contrast, for GaN HEMTs with very low reverse gate leakage (



Scanned Probe Spectroscopy Of Traps In Cross Sectioned Algan Gan Devices


Scanned Probe Spectroscopy Of Traps In Cross Sectioned Algan Gan Devices
DOWNLOAD
Author : Darryl A. Gleason
language : en
Publisher:
Release Date : 2019

Scanned Probe Spectroscopy Of Traps In Cross Sectioned Algan Gan Devices written by Darryl A. Gleason and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Gallium nitride categories.


In this work, scanning probe microscopy (SPM) methods are developed and extended to spatially resolve performance-hampering electrically-active defects, known as traps, present in AlGaN/GaN Schottky barrier diodes (SBDs) and high electron mobility transistors (HEMTs). Commercial devices used in these studies were cross-sectioned to expose electrically-active regions which are traditionally inaccessible to SPM techniques. Surface potential transients (SPTs) are collected over the cross-sectioned faces of devices using nanometer-scale scanning probe deep-level transient spectroscopy (SP-DLTS), a millisecond time-resolved derivative technique of scanning Kelvin probe microscopy (SKPM) that was implemented with a custom system designed to study SBDs and HEMTs in cross-section. Detected SPTs are indicative of carrier emission from bulk defect-related trap states. In conjunction with similar measurements of these trap states using macroscopic techniques, finite-element simulations provide strong, corroborating evidence that observable SPTs are produced by traps located in the bulk of these samples and are therefore not a result of surface states or surface-related phenomena. GaN-based materials offer advantages over many alternatives in high-frequency and high-voltage applications. Features including a wide bandgap and a large breakdown voltage often translate to improved efficiency, performance, and cost in many electronic systems. However, GaN-based material research is still maturing, and charge trapping may be a limiting factor in GaN electrical performance and therefore hinder its widespread application and adoption. Determining the signatures and spatial distributions of active traps in GaN devices is critical for understanding trap-related mechanisms of device failure as well as the growth or fabrication steps which may be responsible for introducing these defect states. Powerful techniques like deep-level transient spectroscopy (DLTS) exist for identifying specific traps in GaN, but the macroscopic variants of DLTS measure averaged trapping characteristics and are unable to precisely spatially locate the traps they measure. SP-DLTS is an extension of atomic force microscopy (AFM) and was developed approximately seven years prior to this writing. The technique uses SKPM to measure the local surface potential which is sensitive to modulations in the local trapped charge. Probing and analyzing the temperature-dependent SPTs using the same approach applied in the aforementioned conventional techniques reveals the signatures of traps which dominate the local SP-DLTS signal. Performing this measurement over a grid of locations (i.e. a map) provides nanometer-scale resolution of transients and therefore active trap modulation. However, device geometry is one primary limitation of plan-view or "top-down" SP-DLTS due to the sensitivity of the technique only to near-surface charge. Device features like electrodes can mask or electrically screen traps located in active device regions. Furthermore, in commercial devices like those studied here, metallic and passivation layers bury, screen, and/or mask traps in many device regions and completely prevent SP-DLTS probe access. Here, commercial AlGaN/GaN SBDs and HEMTs are cross-sectioned to expose their length and depth with sufficiently low surface damage to permit electrical access to traps beneath the cross-sectioned surface. SP-DLTS is used to detect and identify two distinct trap species with energies near EC − 0.6 eV and EC − 0.9 eV. Unlike macroscopic techniques, SP-DLTS affords trap studies under arbitrary bias conditions; the measurements indicate that trap occupancy modulation is observable during both the device on- and off-state, the latter of which is generally unreported in the literature since macroscopic techniques typically measure trap emission during the device on-state. In addition to qualitatively reproducing these experimental results, finite-element HEMT simulations reveal that current leakage mechanisms and the dopant-to-trap ratio in the GaN buffer likely strongly influence the signatures of detected traps by DLTS-based techniques. Collectively, this experimental and computational approach makes a significant advancement in the study and characterization of traps in AlGaN/GaN devices.



Power Gan Devices


Power Gan Devices
DOWNLOAD
Author : Matteo Meneghini
language : en
Publisher: Springer
Release Date : 2016-09-08

Power Gan Devices written by Matteo Meneghini and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-08 with Technology & Engineering categories.


This book presents the first comprehensive overview of the properties and fabrication methods of GaN-based power transistors, with contributions from the most active research groups in the field. It describes how gallium nitride has emerged as an excellent material for the fabrication of power transistors; thanks to the high energy gap, high breakdown field, and saturation velocity of GaN, these devices can reach breakdown voltages beyond the kV range, and very high switching frequencies, thus being suitable for application in power conversion systems. Based on GaN, switching-mode power converters with efficiency in excess of 99 % have been already demonstrated, thus clearing the way for massive adoption of GaN transistors in the power conversion market. This is expected to have important advantages at both the environmental and economic level, since power conversion losses account for 10 % of global electricity consumption. The first part of the book describes the properties and advantages of gallium nitride compared to conventional semiconductor materials. The second part of the book describes the techniques used for device fabrication, and the methods for GaN-on-Silicon mass production. Specific attention is paid to the three most advanced device structures: lateral transistors, vertical power devices, and nanowire-based HEMTs. Other relevant topics covered by the book are the strategies for normally-off operation, and the problems related to device reliability. The last chapter reviews the switching characteristics of GaN HEMTs based on a systems level approach. This book is a unique reference for people working in the materials, device and power electronics fields; it provides interdisciplinary information on material growth, device fabrication, reliability issues and circuit-level switching investigation.



Physics Briefs


Physics Briefs
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1990

Physics Briefs written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with Physics categories.




Gan Transistors For Efficient Power Conversion


Gan Transistors For Efficient Power Conversion
DOWNLOAD
Author : Alex Lidow
language : en
Publisher: John Wiley & Sons
Release Date : 2019-08-12

Gan Transistors For Efficient Power Conversion written by Alex Lidow and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-12 with Science categories.


An up-to-date, practical guide on upgrading from silicon to GaN, and how to use GaN transistors in power conversion systems design This updated, third edition of a popular book on GaN transistors for efficient power conversion has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout, and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices. GaN Transistors for Efficient Power Conversion, 3rd Edition brings key updates to the chapters of Driving GaN Transistors; Modeling, Simulation, and Measurement of GaN Transistors; DC-DC Power Conversion; Envelope Tracking; and Highly Resonant Wireless Energy Transfer. It also offers new chapters on Thermal Management, Multilevel Converters, and Lidar, and revises many others throughout. Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications Updated with 35% new material, including three new chapters on Thermal Management, Multilevel Converters, Wireless Power, and Lidar Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors A valuable resource for professional engineers, systems designers, and electrical engineering students who need to fully understand the state-of-the-art GaN Transistors for Efficient Power Conversion, 3rd Edition is an essential learning tool and reference guide that enables power conversion engineers to design energy-efficient, smaller, and more cost-effective products using GaN transistors.



Semiconductor Material And Device Characterization


Semiconductor Material And Device Characterization
DOWNLOAD
Author : Dieter K. Schroder
language : en
Publisher: John Wiley & Sons
Release Date : 2015-06-29

Semiconductor Material And Device Characterization written by Dieter K. Schroder and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-29 with Technology & Engineering categories.


This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.



Semiconductor Laser Engineering Reliability And Diagnostics


Semiconductor Laser Engineering Reliability And Diagnostics
DOWNLOAD
Author : Peter W. Epperlein
language : en
Publisher: John Wiley & Sons
Release Date : 2013-03-18

Semiconductor Laser Engineering Reliability And Diagnostics written by Peter W. Epperlein and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-18 with Technology & Engineering categories.


This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students. Dr. Peter W. Epperlein is Technology Consultant with his own semiconductor technology consulting business Pwe-PhotonicsElectronics-IssueResolution in the UK. He looks back at a thirty years career in cutting edge photonics and electronics industries with focus on emerging technologies, both in global and start-up companies, including IBM, Hewlett-Packard, Agilent Technologies, Philips/NXP, Essient Photonics and IBM/JDSU Laser Enterprise. He holds Pre-Dipl. (B.Sc.), Dipl. Phys. (M.Sc.) and Dr. rer. nat. (Ph.D.) degrees in physics, magna cum laude, from the University of Stuttgart, Germany. Dr. Epperlein is an internationally recognized expert in compound semiconductor and diode laser technologies. He has accomplished R&D in many device areas such as semiconductor lasers, LEDs, optical modulators, quantum well devices, resonant tunneling devices, FETs, and superconducting tunnel junctions and integrated circuits. His pioneering work on sophisticated diagnostic research has led to many world’s first reports and has been adopted by other researchers in academia and industry. He authored more than seventy peer-reviewed journal papers, published more than ten invention disclosures in the IBM Technical Disclosure Bulletin, has served as reviewer of numerous proposals for publication in technical journals, and has won five IBM Research Division Awards. His key achievements include the design and fabrication of high-power, highly reliable, single mode diode lasers. Book Reviews “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Prof. em. Dr. Heinz Jäckel, High Speed Electronics and Photonics, Swiss Federal Institute of Technology ETH Zürich, Switzerland The book “Semiconductor Laser Engineering, Reliability and Diagnostics” by Dr. P.W. Epperlein is a landmark in the recent literature on semiconductor lasers because it fills a longstanding gap between many excellent books on laser theory and the complex and challenging endeavor to fabricate these devices reproducibly and reliably in an industrial, real world environment. Having worked myself in the early research and development of high power semiconductor lasers, I appreciate the competent, complete and skillful presentation of these three highly interrelated topics, where small effects have dramatic consequences on the success of a final product, on the ultimate performance and on the stringent reliability requirements, which are the name of the game. As the title suggests the author addresses three tightly interwoven and critical topics of state-of-the-art power laser research. The three parts are: device and mode stability engineering (chapter 1, 2), reliability mechanisms and reliability assessment strategies (chapter 3, 4, 5, 6) and finally material and device diagnostics (chapter 7, 8, 9) all treated with a strong focus on the implementation. This emphasis on the complex practical aspects for a large-scale power laser fabrication is a true highlight of the book. The subtle interplay between laser design, reliability strategies, advanced failure analysis and characterization techniques are elaborated in a very rigorous and scientific way using a very clear and easy to read representation of the complex interrelation of the three major topics. I will abstain from trying to provide a complete account of all the topics but mainly concentrate on the numerous highlights. The first part 1 “Laser Engineering” is divided in two chapters on basic electronic-optical, structural, material and resonator laser engineering on the one side, and on single mode control and stability at very high, still reliable power-levels with the trade-off between mirror damage, single mode stability on the other side. To round up the picture less well-known concepts and the state-of-the-art of large-area lasers, which can be forced into single-mode operation, are reviewed carefully. The subtle and complex interplay, which is challenging to optimize for a design for reliability and low stress as a major boundary condition is crucial for the design. The section gives a rather complete and well-referenced account of all relevant aspects, relations and trade-offs for understanding the rest of the book. The completeness of the presentation on power laser diode design based on basic physical and plausible arguments is mainly based on analytic mathematical relations as well as experiments providing a new and well-balanced addition for the power diode laser literature in particular. Modern 2D self-consistent electro-optical laser modeling including carrier hole burning and thermal effects – this is important because the weak optical guiding and gain-discrimination depend critically on rather small quantities and effects, which are difficult to optimize experimentally – is used in the book for simulation results, but is not treated separately. The novel and really original, “gap-filling” bulk of the book is elaborated by the author in a very clear way in the following four chapters in the part 2 “Laser Reliability” on laser degradation physics and mirror design and passivation at high power, followed then by two very application oriented chapters on reliability design engineering and practical reliability strategies and implementation procedures. This original combination of integral design and reliability aspects – which are mostly neglected in standard literature – is certainly a major plus of this book. I liked this second section as a whole, because it provides excellent insights in degradation physics on a high level and combines it in an interesting and skillful way with the less “glamorous” (unfortunately) but highly relevant reliability science and testing strategies, which is particularly important for devices operating at extreme optical stresses with challenging lifetime requirements in a real word environment. Finally, the last part 3 “Laser Diagnostics” comprising three chapters, is devoted mainly to advanced experimental diagnostics techniques for material integrity, mechanical stress, deep level defects, various dynamic laser degradation effects, surface- and interface quality, and most importantly heating and disordering of mirrors and mirror coatings. The topics of characterization techniques comprising micro-Raman- and micro-thermoreflectance-probing, 2K photoluminescence spectroscopy, micro-electroluminescence and photoluminescence scanning, and deep-level-transient spectroscopy have been pioneered by the author for the specific applications over many years guaranteeing many competent and well represented insights. These techniques are brilliantly discussed and the information distributed in many articles by the author has been successfully unified in a book form. In my personal judgment and liking, I consider the parts 2 and 3 on reliability and diagnostics as the most valuable and true novel contribution of the book, which in combination with the extremely well-covered laser design of part 1 clearly fill the gap in the current diode laser literature, which in this detail has certainly been neglected in the past. In summary, I can highly recommend this excellent, well-organized and clearly written book to readers who are already familiar with basic diode laser theory and who are active in the academic and industrial fabrication and characterization of semiconductor lasers. Due to its completeness, it also serves as an excellent reference of the current state-of-the-art in reliability engineering and device and material diagnostics. Needless to mention that the quality of the book, its representations and methodical structure meet the highest expectation and are certainly a tribute from the long and broad experience of the author in academic laser science and the industrial commercialization of high power diode lasers. In my opinion, this book was a pleasure to read and due to its quality and relevance deserves a large audience in the power diode laser community! Prof. em. Dr. Heinz Jäckel, High Speed Electronics and Photonics, Swiss Federal Institute of Technology ETH Zürich, Switzerland June 16, 2013 ========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Dr. Chung-en Zah, Research Director, Semiconductor Technologies Research, S&T Division, Corning Incorporate, Corning NY, USA This book covers for the first time the three closely interrelated key laser areas of engineering (design), reliability and diagnostics in one book, written by the well-known practitioner in cutting-edge optoelectronics industries, Dr. Peter W. Epperlein. The book closes the gap in the current book literature and is thus a unique and excellent example of how to merge design, reliability and diagnostics aspects in a very professional, profound and complete manner. All physical and technological principles, concepts and practical aspects required for developing and fabricating highly-reliable high-power single-mode laser products are precisely specified and skilfully formulated along with all the necessary equations, figures, tables and worked-out examples making it easy to follow through the nine chapters. Hence, this unique book is a milestone in the diode laser literature and is an excellent reference book not only for diode laser researchers and engineers, but also diode laser users. The engineering part starts with a very informative and clear, well-presented account of all necessary basic diode laser types, principles, parameters and characteristics for an easy and quick understanding of laser functionality within the context of the book. Along with an elaborate and broad discussion of relevant laser material systems, applications, typical output powers, power-limiting factors and reliability tradeoffs, basic fabrication and packaging technologies, this excellent introductory section is well suited to become quickly and easily familiar with practical aspects and issues of diode laser technologies. Of special importance and high usefulness is the first analytic and quantitative discussion in a book on issues of coupling laser power into optical single mode fibers. The second section discusses in a well-balanced, competent and skilful way waveguide topics such as basic high-power design approaches, transverse vertical and lateral waveguide concepts, stability of the fundamental transverse lateral mode and fundamental mode waveguide optimization techniques by considering detrimental effects such as heating, carrier injection, spatial hole burning, lateral current spreading and gain profile variations. Less well-known approaches to force large-area lasers into a single mode operation are well-identified and carefully discussed in depth and breadth. All these topics are elaborated in a very complete, rigorous and scientific way and are clearly articulated and easy to read. In particular, the book works out the complex interaction between the many different effects to optimize high-power single-mode performance at ultimate reliability and thus is of great benefit to every researcher and engineer engaged in this diode laser field. Another novelty and highlight is, for the first time ever in book form, a comprehensive yet concise discussion of diode laser reliability related issues. These are elaborated in four distinct chapters comprising laser degradation physics and modes, optical strength enhancement approaches including mirror passivation/coating and non-absorbing mirror technologies, followed by two highly relevant product-oriented chapters on reliability design engineering concepts and techniques and an elaborate reliability test plan for laser chip and module product qualification. This original and novel approach to link laser design to reliability aspects and requirements provides both, most useful insight into degradation processes such as catastrophic optical mirror damage on a microscopic scale, and a wide selection of effective remedial actions. These accounts, which are of highest significance for lasers operating at the optical stress limit due to extremely high output power densities and most demanding lifetime requirements are very professionally prepared and discussed in an interesting, coherent and skilful manner. The diagnostics part, consisting of three very elaborate chapters, is most unique and novel with respect to other diode laser books. It discusses for the first time ever on a very high level and in a competent way studies on material integrity, impurity trapping effects, mirror and cavity temperatures, surface- and interface quality, mirror facet disorder effects, mechanical stress and facet coating instability, and diverse laser temperature effects, dynamic laser degradation effects and mirror temperature maps. Of highest significance to design, performance and reliability are the various correlations established between laser device and material parameters. The most different and sophisticated experiments, carried out by the author at micrometer spatial resolutions and at temperatures as low as 2K, provide highly valuable insights into laser and material quality parameters, and reveal for the first time the origins of high power limitations on an atomic scale due to local heating effects and deep level defects. It is of great benefit, that the experimental techniques such as Raman spectroscopy, various luminescence techniques, thermoreflectance and deep-level transient spectroscopy, pioneered by the author for the specific experiments on lasers, are discussed with great expertise in depth and breadth, and the numerous paper articles published by the author are now represented in this book. The book has an elaborate table of contents and index, which are very useful, over 200 illustrative figures and tables, and extensive lists of references to all technical topics at the end of each of the nine chapters, which make it easy to follow from cover to cover or by jumping in at random areas of special interest. Moreover, experimental and theoretical concepts are always illustrated by practical examples and data. I can highly recommend this extremely relevant, well-structured and well-formulated book to all practising researchers in industrial and academic diode laser R&D environments and to post-graduate engineering students interested in the actual problems of designing, manufacturing, testing, characterising and qualifying diode lasers. Due to its completeness and novel approach to combine design, reliability and diagnostics in the same book, it can serve as an ideal reference book as well, and it deserves to be welcomed wordwide by the addressed audience. Dr. Chung-en Zah, Research Director, Semiconductor Technologies Research, S&T Division, Corning Incorporate, Corning NY, USA =========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Cordinatore Prof. Lorenzo Pavesi, UNIVERSITÀ DEGLI STUDI DI TRENTO, Dipartimento di Fisica / Laboratorio di Nanoscienze This book represents a well thought description of three fundamental aspects of laser technology: the functioning principles, the reliability and the diagnostics. From this point of view, and, as far as I know, this is a unique example of a book where all these aspects are merged together resulting in a well-balanced presentation. This helps the reader to move with ease between different concepts since they are presented in a coherent manner and with the same terminology, symbols and definitions. The book reads well. Despite the subtitle indicates that it is a practical approach, the book is also correct from a formal point of view and presents the necessary equations and derivations to understand both the physical mechanisms and the practicalities via a set of useful formulas. In addition, there is the more important aspect of many real-life examples of how a laser is actually manufactured and which the relevant parameters that determine its behaviour are. It impresses the amounts of information that are given in the book: this would be more typical of a thick handbook on semiconductor laser than of an agile book. Dr. Epperlein was able to identify the most important concepts and to present them in a clear though concise way. I am teaching a course on Optoelectronics and I'm going to advise students to refer to this book, because it has all the necessary concepts and derivations for a systematic understanding of semiconductor lasers with many worked-out examples, which will help the student to grasp the actual problems of designing, manufacturing, testing and using semiconductor lasers. All the various concepts are joined to very useful figures, which, if provided to instructors as files, can be a useful add-on for the use of the book as text for teaching. Concepts are always detailed with numbers to give a feeling of their practical use. In conclusion, I do find the book suitable for my teaching duties and will refer it to my students. Prof. Dr. Lorenzo Pavesi, Head of the Department of Physics, Head of the Nanoscience Laboratory, University of Trento, Italy 31 May 2013 =========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Robert W. Herrick, Ph.D., Senior Component Reliability Engineer, Intel Corp., Santa Clara, California, USA Dr. Epperlein has done the semiconductor laser community a great service, by releasing the most complete book on the market on the practical issues of how to make reliable semiconductor lasers. While dozens of books have been written over the past couple of decades on semiconductor laser design, only a handful have been written on semiconductor laser reliability. Prior to the release of this book, perhaps 40% of the material could be obtained elsewhere by combining five books: one on laser design, one on laser reliability, one on reliability calculations, and a couple of laser review books. Another 40% could be pieced together by collecting 50 -100 papers on the subjects of laser design, laser fabrication, characterization, and reliability. The remaining 20% have not previously been covered in any comprehensive way. Only the introductory material in the first half of the first chapter has good coverage elsewhere. The large majority of the knowledge in this book is generally held as “trade secret” by those with the expertise in the field, and most of those in the know are not free to discuss. The author was fortunate enough to work for the first half of his career in the IBM research labs, with access to unparalleled resources, and the ability to publish his work without trade secret restrictions. The results are still at the cutting edge of our understanding of semiconductor laser reliability today, and go well beyond the empirical “black box” approach many use of “try everything, and see what works.” The author did a fine job of pulling together material from many disparate fields. Dr. Epperlein has particular expertise in high power single mode semiconductor lasers, and those working on those type of lasers will be especially interested in this book, as there has never been a book published on the fabrication and qualification of such lasers before. But those in almost any field of semiconductor lasers will learn items of interest about device design, fabrication, reliability, and characterization. Unlike most other books, which intend to convey the scientific findings or past work of the author, this one is written more as a “how to” manual, which should make it more accessible and useful to development engineers and researchers in the field. It also has over 200 figures, which make it easier to follow. As with many books of this type, it is not necessary to read it from cover-to-cover; it is best skimmed, with deep diving into any areas of special interest to the reader. The book is remarkable also for how comprehensive it is – even experts will discover something new and useful. Dr. Epperlein’s book is an essential read for anyone looking to develop semiconductor lasers for anything other than pure research use, and I give it my highest recommendation. Robert W. Herrick, Ph.D., Senior Component Reliability Engineer, Intel Corp., Santa Clara, California, USA



The Physics Of Semiconductor Devices


The Physics Of Semiconductor Devices
DOWNLOAD
Author : R. K. Sharma
language : en
Publisher: Springer
Release Date : 2019-01-31

The Physics Of Semiconductor Devices written by R. K. Sharma and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Technology & Engineering categories.


This book disseminates the current knowledge of semiconductor physics and its applications across the scientific community. It is based on a biennial workshop that provides the participating research groups with a stimulating platform for interaction and collaboration with colleagues from the same scientific community. The book discusses the latest developments in the field of III-nitrides; materials & devices, compound semiconductors, VLSI technology, optoelectronics, sensors, photovoltaics, crystal growth, epitaxy and characterization, graphene and other 2D materials and organic semiconductors.



Defects In Semiconductors


Defects In Semiconductors
DOWNLOAD
Author :
language : en
Publisher: Academic Press
Release Date : 2015-06-08

Defects In Semiconductors written by and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-08 with Technology & Engineering categories.


This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoretical paths. Expert contributors Reviews of the most important recent literature Clear illustrations A broad view, including examination of defects in different semiconductors



Principles Of The Theory Of Solids


Principles Of The Theory Of Solids
DOWNLOAD
Author : J. M. Ziman
language : en
Publisher: Cambridge University Press
Release Date : 1979-11-29

Principles Of The Theory Of Solids written by J. M. Ziman and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1979-11-29 with Science categories.


Professor Ziman's classic textbook on the theory of solids was first pulished in 1964. This paperback edition is a reprint of the second edition, which was substantially revised and enlarged in 1972. The value and popularity of this textbook is well attested by reviewers' opinions and by the existence of several foreign language editions, including German, Italian, Spanish, Japanese, Polish and Russian. The book gives a clear exposition of the elements of the physics of perfect crystalline solids. In discussing the principles, the author aims to give students an appreciation of the conditions which are necessary for the appearance of the various phenomena. A self-contained mathematical account is given of the simplest model that will demonstrate each principle. A grounding in quantum mechanics and knowledge of elementary facts about solids is assumed. This is therefore a textbook for advanced undergraduates and is also appropriate for graduate courses.