Random Ordinary Differential Equations And Their Numerical Solution

DOWNLOAD
Download Random Ordinary Differential Equations And Their Numerical Solution PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Random Ordinary Differential Equations And Their Numerical Solution book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Random Ordinary Differential Equations And Their Numerical Solution
DOWNLOAD
Author : Xiaoying Han
language : en
Publisher: Springer
Release Date : 2017-10-25
Random Ordinary Differential Equations And Their Numerical Solution written by Xiaoying Han and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-25 with Mathematics categories.
This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs). RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems. They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor expansions in the usual sense. However, Taylor-like expansions can be derived for RODEs using an iterated application of the appropriate chain rule in integral form, and represent the starting point for the systematic derivation of consistent higher order numerical schemes for RODEs. The book is directed at a wide range of readers in applied and computational mathematics and related areas as well as readers who are interested in the applications of mathematical models involving random effects, in particular in the biological sciences.The level of this book is suitable for graduate students in applied mathematics and related areas, computational sciences and systems biology. A basic knowledge of ordinary differential equations and numerical analysis is required.
Numerical Methods For Stochastic Partial Differential Equations With White Noise
DOWNLOAD
Author : Zhongqiang Zhang
language : en
Publisher: Springer
Release Date : 2017-09-12
Numerical Methods For Stochastic Partial Differential Equations With White Noise written by Zhongqiang Zhang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-12 with Mathematics categories.
This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.
Numerical Solution Of Stochastic Differential Equations
DOWNLOAD
Author : Peter E. Kloeden
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
Numerical Solution Of Stochastic Differential Equations written by Peter E. Kloeden and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
The aim of this book is to provide an accessible introduction to stochastic differ ential equations and their applications together with a systematic presentation of methods available for their numerical solution. During the past decade there has been an accelerating interest in the de velopment of numerical methods for stochastic differential equations (SDEs). This activity has been as strong in the engineering and physical sciences as it has in mathematics, resulting inevitably in some duplication of effort due to an unfamiliarity with the developments in other disciplines. Much of the reported work has been motivated by the need to solve particular types of problems, for which, even more so than in the deterministic context, specific methods are required. The treatment has often been heuristic and ad hoc in character. Nevertheless, there are underlying principles present in many of the papers, an understanding of which will enable one to develop or apply appropriate numerical schemes for particular problems or classes of problems.
Fractional Partial Differential Equations And Their Numerical Solutions
DOWNLOAD
Author : Boling Guo
language : en
Publisher: World Scientific
Release Date : 2015-03-09
Fractional Partial Differential Equations And Their Numerical Solutions written by Boling Guo and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-09 with Mathematics categories.
This book aims to introduce some new trends and results on the study of the fractional differential equations, and to provide a good understanding of this field to beginners who are interested in this field, which is the authors' beautiful hope.This book describes theoretical and numerical aspects of the fractional partial differential equations, including the authors' researches in this field, such as the fractional Nonlinear Schrödinger equations, fractional Landau-Lifshitz equations and fractional Ginzburg-Landau equations. It also covers enough fundamental knowledge on the fractional derivatives and fractional integrals, and enough background of the fractional PDEs.
Numerical Solution Of Ordinary Differential Equations
DOWNLOAD
Author :
language : en
Publisher: Academic Press
Release Date : 1971-03-31
Numerical Solution Of Ordinary Differential Equations written by and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1971-03-31 with Mathematics categories.
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering
Applied Stochastic Differential Equations
DOWNLOAD
Author : Simo Särkkä
language : en
Publisher: Cambridge University Press
Release Date : 2019-05-02
Applied Stochastic Differential Equations written by Simo Särkkä and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-02 with Business & Economics categories.
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Numerical Methods For Random Ordinary Differential Equations And Their Applications In Biology And Medicine
DOWNLOAD
Author : Yusuke Asai
language : en
Publisher:
Release Date : 2016
Numerical Methods For Random Ordinary Differential Equations And Their Applications In Biology And Medicine written by Yusuke Asai and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.
Random ordinary differential equations (RODEs) are ordinary differential equations (ODEs) which have a stochastic process in their vector field functions. RODEs have been used in a wide range of applications such as biology, medicine, population dynamics and engineering and play an important role in the theory of random dynamical systems, however, they have been long overshadowed by stochastic differential equations. Typically, the driving stochastic process has at most Hoelder continuous sample paths and the resulting vector field is, thus, at most Hoelder continuous in time, no matter how smooth the vector function is in its original variables, so the sample paths of the solution are certainly continuously differentiable, but their derivatives are at most Hoelder continuous in time. Consequently, although the classical numerical schemes for ODEs can be applied pathwise to RODEs, they do not achieve their traditional orders. ...
Stochastic Flows And Stochastic Differential Equations
DOWNLOAD
Author : Hiroshi Kunita
language : en
Publisher: Cambridge University Press
Release Date : 1990
Stochastic Flows And Stochastic Differential Equations written by Hiroshi Kunita and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with Mathematics categories.
The main purpose of this book is to give a systematic treatment of the theory of stochastic differential equations and stochastic flow of diffeomorphisms, and through the former to study the properties of stochastic flows.The classical theory was initiated by K. Itô and since then has been much developed. Professor Kunita's approach here is to regard the stochastic differential equation as a dynamical system driven by a random vector field, including thereby Itô's theory as a special case. The book can be used with advanced courses on probability theory or for self-study.
Numerical Methods For Ordinary Differential Equations
DOWNLOAD
Author : David F. Griffiths
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-11-11
Numerical Methods For Ordinary Differential Equations written by David F. Griffiths and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-11 with Mathematics categories.
Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com
Continuous Time Random Walks For The Numerical Solution Of Stochastic Differential Equations
DOWNLOAD
Author : Nawaf Bou-Rabee
language : en
Publisher: American Mathematical Soc.
Release Date : 2019-01-08
Continuous Time Random Walks For The Numerical Solution Of Stochastic Differential Equations written by Nawaf Bou-Rabee and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-08 with Mathematics categories.
This paper introduces time-continuous numerical schemes to simulate stochastic differential equations (SDEs) arising in mathematical finance, population dynamics, chemical kinetics, epidemiology, biophysics, and polymeric fluids. These schemes are obtained by spatially discretizing the Kolmogorov equation associated with the SDE in such a way that the resulting semi-discrete equation generates a Markov jump process that can be realized exactly using a Monte Carlo method. In this construction the jump size of the approximation can be bounded uniformly in space, which often guarantees that the schemes are numerically stable for both finite and long time simulation of SDEs.