Real Time Stream Data Management

DOWNLOAD
Download Real Time Stream Data Management PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Real Time Stream Data Management book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Real Time Stream Data Management
DOWNLOAD
Author : Wolfram Wingerath
language : en
Publisher: Springer
Release Date : 2019-01-02
Real Time Stream Data Management written by Wolfram Wingerath and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-02 with Computers categories.
While traditional databases excel at complex queries over historical data, they are inherently pull-based and therefore ill-equipped to push new information to clients. Systems for data stream management and processing, on the other hand, are natively pushoriented and thus facilitate reactive behavior. However, they do not retain data indefinitely and are therefore not able to answer historical queries. The book provides an overview over the different (push-based) mechanisms for data retrieval in each system class and the semantic differences between them. It also provides a comprehensive overview over the current state of the art in real-time databases. It sfirst includes an in-depth system survey of today's real-time databases: Firebase, Meteor, RethinkDB, Parse, Baqend, and others. Second, the high-level classification scheme illustrated above provides a gentle introduction into the system space of data management: Abstracting from the extreme system diversity in this field, it helps readers build a mental model of the available options.
Data Stream Management
DOWNLOAD
Author : Minos Garofalakis
language : en
Publisher: Springer
Release Date : 2016-07-11
Data Stream Management written by Minos Garofalakis and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-11 with Computers categories.
This volume focuses on the theory and practice of data stream management, and the novel challenges this emerging domain poses for data-management algorithms, systems, and applications. The collection of chapters, contributed by authorities in the field, offers a comprehensive introduction to both the algorithmic/theoretical foundations of data streams, as well as the streaming systems and applications built in different domains. A short introductory chapter provides a brief summary of some basic data streaming concepts and models, and discusses the key elements of a generic stream query processing architecture. Subsequently, Part I focuses on basic streaming algorithms for some key analytics functions (e.g., quantiles, norms, join aggregates, heavy hitters) over streaming data. Part II then examines important techniques for basic stream mining tasks (e.g., clustering, classification, frequent itemsets). Part III discusses a number of advanced topics on stream processing algorithms, and Part IV focuses on system and language aspects of data stream processing with surveys of influential system prototypes and language designs. Part V then presents some representative applications of streaming techniques in different domains (e.g., network management, financial analytics). Finally, the volume concludes with an overview of current data streaming products and new application domains (e.g. cloud computing, big data analytics, and complex event processing), and a discussion of future directions in this exciting field. The book provides a comprehensive overview of core concepts and technological foundations, as well as various systems and applications, and is of particular interest to students, lecturers and researchers in the area of data stream management.
Real Time Analytics
DOWNLOAD
Author : Byron Ellis
language : en
Publisher: John Wiley & Sons
Release Date : 2014-06-23
Real Time Analytics written by Byron Ellis and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-23 with Computers categories.
Construct a robust end-to-end solution for analyzing and visualizing streaming data Real-time analytics is the hottest topic in data analytics today. In Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, expert Byron Ellis teaches data analysts technologies to build an effective real-time analytics platform. This platform can then be used to make sense of the constantly changing data that is beginning to outpace traditional batch-based analysis platforms. The author is among a very few leading experts in the field. He has a prestigious background in research, development, analytics, real-time visualization, and Big Data streaming and is uniquely qualified to help you explore this revolutionary field. Moving from a description of the overall analytic architecture of real-time analytics to using specific tools to obtain targeted results, Real-Time Analytics leverages open source and modern commercial tools to construct robust, efficient systems that can provide real-time analysis in a cost-effective manner. The book includes: A deep discussion of streaming data systems and architectures Instructions for analyzing, storing, and delivering streaming data Tips on aggregating data and working with sets Information on data warehousing options and techniques Real-Time Analytics includes in-depth case studies for website analytics, Big Data, visualizing streaming and mobile data, and mining and visualizing operational data flows. The book's "recipe" layout lets readers quickly learn and implement different techniques. All of the code examples presented in the book, along with their related data sets, are available on the companion website.
Streaming Systems
DOWNLOAD
Author : Tyler Akidau
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-07-16
Streaming Systems written by Tyler Akidau and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-16 with Computers categories.
Streaming data is a big deal in big data these days. As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way. Expanded from Tyler Akidau’s popular blog posts "Streaming 101" and "Streaming 102", this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You’ll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax. You’ll explore: How streaming and batch data processing patterns compare The core principles and concepts behind robust out-of-order data processing How watermarks track progress and completeness in infinite datasets How exactly-once data processing techniques ensure correctness How the concepts of streams and tables form the foundations of both batch and streaming data processing The practical motivations behind a powerful persistent state mechanism, driven by a real-world example How time-varying relations provide a link between stream processing and the world of SQL and relational algebra
Data Stream Management
DOWNLOAD
Author : Lukasz Golab
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2010
Data Stream Management written by Lukasz Golab and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Computers categories.
In this lecture many applications process high volumes of streaming data, among them Internet traffic analysis, financial tickers, and transaction log mining. In general, a data stream is an unbounded data set that is produced incrementally over time, rather than being available in full before its processing begins. In this lecture, we give an overview of recent research in stream processing, ranging from answering simple queries on high-speed streams to loading real-time data feeds into a streaming warehouse for off-line analysis. We will discuss two types of systems for end-to-end stream processing: Data Stream Management Systems (DSMSs) and Streaming Data Warehouses (SDWs). A traditional database management system typically processes a stream of ad-hoc queries over relatively static data. In contrast, a DSMS evaluates static (long-running) queries on streaming data, making a single pass over the data and using limited working memory. In the first part of this lecture, we will discuss research problems in DSMSs, such as continuous query languages, non-blocking query operators that continually react to new data, and continuous query optimization. The second part covers SDWs, which combine the real-time response of a DSMS by loading new data as soon as they arrive with a data warehouse's ability to manage Terabytes of historical data on secondary storage. Table of Contents: Introduction / Data Stream Management Systems / Streaming Data Warehouses / Conclusions
Stream Data Management
DOWNLOAD
Author : Nauman Chaudhry
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-09-19
Stream Data Management written by Nauman Chaudhry and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-09-19 with Computers categories.
Researchers in data management have recently recognized the importance of a new class of data-intensive applications that requires managing data streams, i.e., data composed of continuous, real-time sequence of items. Streaming applications pose new and interesting challenges for data management systems. Such application domains require queries to be evaluated continuously as opposed to the one time evaluation of a query for traditional applications. Streaming data sets grow continuously and queries must be evaluated on such unbounded data sets. These, as well as other challenges, require a major rethink of almost all aspects of traditional database management systems to support streaming applications. Stream Data Management comprises eight invited chapters by researchers active in stream data management. The collected chapters provide exposition of algorithms, languages, as well as systems proposed and implemented for managing streaming data. Stream Data Management is designed to appeal to researchers or practitioners already involved in stream data management, as well as to those starting out in this area. This book is also suitable for graduate students in computer science interested in learning about stream data management.
I Heart Logs
DOWNLOAD
Author : Jay Kreps
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2014-09-23
I Heart Logs written by Jay Kreps and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-23 with Computers categories.
Why a book about logs? That’s easy: the humble log is an abstraction that lies at the heart of many systems, from NoSQL databases to cryptocurrencies. Even though most engineers don’t think much about them, this short book shows you why logs are worthy of your attention. Based on his popular blog posts, LinkedIn principal engineer Jay Kreps shows you how logs work in distributed systems, and then delivers practical applications of these concepts in a variety of common uses—data integration, enterprise architecture, real-time stream processing, data system design, and abstract computing models. Go ahead and take the plunge with logs; you’re going love them. Learn how logs are used for programmatic access in databases and distributed systems Discover solutions to the huge data integration problem when more data of more varieties meet more systems Understand why logs are at the heart of real-time stream processing Learn the role of a log in the internals of online data systems Explore how Jay Kreps applies these ideas to his own work on data infrastructure systems at LinkedIn
Aws Timestream Data Management And Analysis
DOWNLOAD
Author : Richard Johnson
language : en
Publisher: HiTeX Press
Release Date : 2025-05-28
Aws Timestream Data Management And Analysis written by Richard Johnson and has been published by HiTeX Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-28 with Computers categories.
"AWS Timestream Data Management and Analysis" Discover the definitive guide to harnessing the power of AWS Timestream with "AWS Timestream Data Management and Analysis." Designed for architects, engineers, and analytic professionals, this comprehensive book delves deeply into time series data concepts and the unique architectural foundations underpinning Timestream. It offers a clear exploration of how AWS Timestream compares to traditional RDBMS, NoSQL, and other time series solutions, highlighting its data structures, scalability strategies, and ideal deployment scenarios in the modern cloud. The book provides hands-on guidance for provisioning, configuring, and optimizing Timestream environments at every stage of the data lifecycle. Readers will gain practical insights into efficient data ingestion—batch, micro-batch, and streaming—as well as robust integration with AWS services like Kinesis, Lambda, QuickSight, and Glue. Detailed chapters address advanced data modeling, analytics, and storage optimization techniques, along with cost management, security best practices, compliance frameworks, and performance tuning. Each topic is presented through clear explanations and actionable patterns, empowering professionals to architect reliable, high-performance time series solutions for IoT, DevOps, financial, and manufacturing applications. Looking toward the future, the book explores emerging innovations such as serverless analytics, edge computing, AI/ML integrations, and zero-ETL architectures, while also surveying open standards and next-generation cloud strategies. Real-world case studies and industry applications illustrate Timestream’s value across diverse sectors, providing readers with practical blueprints for success. Whether you're building scalable telemetry pipelines, predictive analytics engines, or secure, multi-tenant data architectures, this authoritative guide offers the tools, context, and confidence to excel with AWS Timestream.
Kafka Streams Real Time Stream Processing
DOWNLOAD
Author : Prashant Kumar Pandey
language : en
Publisher: Learning Journal
Release Date : 2019-03-26
Kafka Streams Real Time Stream Processing written by Prashant Kumar Pandey and has been published by Learning Journal this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-26 with Computers categories.
The book Kafka Streams - Real-time Stream Processing helps you understand the stream processing in general and apply that skill to Kafka streams programming. This book is focusing mainly on the new generation of the Kafka Streams library available in the Apache Kafka 2.x. The primary focus of this book is on Kafka Streams. However, the book also touches on the other Apache Kafka capabilities and concepts that are necessary to grasp the Kafka Streams programming. Who should read this book? Kafka Streams: Real-time Stream Processing is written for software engineers willing to develop a stream processing application using Kafka Streams library. I am also writing this book for data architects and data engineers who are responsible for designing and building the organization’s data-centric infrastructure. Another group of people is the managers and architects who do not directly work with Kafka implementation, but they work with the people who implement Kafka Streams at the ground level. What should you already know? This book assumes that the reader is familiar with the basics of Java programming language. The source code and examples in this book are using Java 8, and I will be using Java 8 lambda syntax, so experience with lambda will be helpful. Kafka Streams is a library that runs on Kafka. Having a good fundamental knowledge of Kafka is essential to get the most out of Kafka Streams. I will touch base on the mandatory Kafka concepts for those who are new to Kafka. The book also assumes that you have some familiarity and experience in running and working on the Linux operating system.
Practical Real Time Data Processing And Analytics
DOWNLOAD
Author : Shilpi Saxena
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-09-28
Practical Real Time Data Processing And Analytics written by Shilpi Saxena and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-28 with Computers categories.
A practical guide to help you tackle different real-time data processing and analytics problems using the best tools for each scenario About This Book Learn about the various challenges in real-time data processing and use the right tools to overcome them This book covers popular tools and frameworks such as Spark, Flink, and Apache Storm to solve all your distributed processing problems A practical guide filled with examples, tips, and tricks to help you perform efficient Big Data processing in real-time Who This Book Is For If you are a Java developer who would like to be equipped with all the tools required to devise an end-to-end practical solution on real-time data streaming, then this book is for you. Basic knowledge of real-time processing would be helpful, and knowing the fundamentals of Maven, Shell, and Eclipse would be great. What You Will Learn Get an introduction to the established real-time stack Understand the key integration of all the components Get a thorough understanding of the basic building blocks for real-time solution designing Garnish the search and visualization aspects for your real-time solution Get conceptually and practically acquainted with real-time analytics Be well equipped to apply the knowledge and create your own solutions In Detail With the rise of Big Data, there is an increasing need to process large amounts of data continuously, with a shorter turnaround time. Real-time data processing involves continuous input, processing and output of data, with the condition that the time required for processing is as short as possible. This book covers the majority of the existing and evolving open source technology stack for real-time processing and analytics. You will get to know about all the real-time solution aspects, from the source to the presentation to persistence. Through this practical book, you'll be equipped with a clear understanding of how to solve challenges on your own. We'll cover topics such as how to set up components, basic executions, integrations, advanced use cases, alerts, and monitoring. You'll be exposed to the popular tools used in real-time processing today such as Apache Spark, Apache Flink, and Storm. Finally, you will put your knowledge to practical use by implementing all of the techniques in the form of a practical, real-world use case. By the end of this book, you will have a solid understanding of all the aspects of real-time data processing and analytics, and will know how to deploy the solutions in production environments in the best possible manner. Style and Approach In this practical guide to real-time analytics, each chapter begins with a basic high-level concept of the topic, followed by a practical, hands-on implementation of each concept, where you can see the working and execution of it. The book is written in a DIY style, with plenty of practical use cases, well-explained code examples, and relevant screenshots and diagrams.