Regression And Time Series Model Selection

DOWNLOAD
Download Regression And Time Series Model Selection PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Regression And Time Series Model Selection book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Regression And Time Series Model Selection
DOWNLOAD
Author : Allan D. R. McQuarrie
language : en
Publisher: World Scientific
Release Date : 1998
Regression And Time Series Model Selection written by Allan D. R. McQuarrie and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Mathematics categories.
This important book describes procedures for selecting a model from a large set of competing statistical models. It includes model selection techniques for univariate and multivariate regression models, univariate and multivariate autoregressive models, nonparametric (including wavelets) and semiparametric regression models, and quasi-likelihood and robust regression models. Information-based model selection criteria are discussed, and small sample and asymptotic properties are presented. The book also provides examples and large scale simulation studies comparing the performances of information-based model selection criteria, bootstrapping, and cross-validation selection methods over a wide range of models.
Regression And Time Series Model Selection
DOWNLOAD
Author : Allan D. R. McQuarrie
language : en
Publisher: World Scientific
Release Date : 1998
Regression And Time Series Model Selection written by Allan D. R. McQuarrie and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Mathematics categories.
This important book describes procedures for selecting a model from a large set of competing statistical models. It includes model selection techniques for univariate and multivariate regression models, univariate and multivariate autoregressive models, nonparametric (including wavelets) and semiparametric regression models, and quasi-likelihood and robust regression models. Information-based model selection criteria are discussed, and small sample and asymptotic properties are presented. The book also provides examples and large scale simulation studies comparing the performances of information-based model selection criteria, bootstrapping, and cross-validation selection methods over a wide range of models.
Forecasting Principles And Practice
DOWNLOAD
Author : Rob J Hyndman
language : en
Publisher: OTexts
Release Date : 2018-05-08
Forecasting Principles And Practice written by Rob J Hyndman and has been published by OTexts this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-08 with Business & Economics categories.
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Econometric Analysis Of Model Selection And Model Testing
DOWNLOAD
Author : M. Ishaq Bhatti
language : en
Publisher: Routledge
Release Date : 2017-03-02
Econometric Analysis Of Model Selection And Model Testing written by M. Ishaq Bhatti and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-02 with Business & Economics categories.
In recent years econometricians have examined the problems of diagnostic testing, specification testing, semiparametric estimation and model selection. In addition researchers have considered whether to use model testing and model selection procedures to decide the models that best fit a particular dataset. This book explores both issues with application to various regression models, including the arbitrage pricing theory models. It is ideal as a reference for statistical sciences postgraduate students, academic researchers and policy makers in understanding the current status of model building and testing techniques.
Time Series Analysis Univariate And Multivariate Methods
DOWNLOAD
Author : William W. S. Wei
language : en
Publisher: Pearson
Release Date : 2018-03-14
Time Series Analysis Univariate And Multivariate Methods written by William W. S. Wei and has been published by Pearson this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-14 with Time-series analysis categories.
With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.
Forecasting Structural Time Series Models And The Kalman Filter
DOWNLOAD
Author : Andrew C. Harvey
language : en
Publisher: Cambridge University Press
Release Date : 1990
Forecasting Structural Time Series Models And The Kalman Filter written by Andrew C. Harvey and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with Business & Economics categories.
A synthesis of concepts and materials, that ordinarily appear separately in time series and econometrics literature, presents a comprehensive review of theoretical and applied concepts in modeling economic and social time series.
Model Selection
DOWNLOAD
Author : Parhasarathi Lahiri
language : en
Publisher: IMS
Release Date : 2001
Model Selection written by Parhasarathi Lahiri and has been published by IMS this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.
Model Selection And Inference
DOWNLOAD
Author : Kenneth P. Burnham
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
Model Selection And Inference written by Kenneth P. Burnham and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.
We wrote this book to introduce graduate students and research workers in var ious scientific disciplines to the use of information-theoretic approaches in the analysis of empirical data. In its fully developed form, the information-theoretic approach allows inference based on more than one model (including estimates of unconditional precision); in its initial form, it is useful in selecting a "best" model and ranking the remaining models. We believe that often the critical issue in data analysis is the selection of a good approximating model that best represents the inference supported by the data (an estimated "best approximating model"). In formation theory includes the well-known Kullback-Leibler "distance" between two models (actually, probability distributions), and this represents a fundamental quantity in science. In 1973, Hirotugu Akaike derived an estimator of the (relative) Kullback-Leibler distance based on Fisher's maximized log-likelihood. His mea sure, now called Akaike 's information criterion (AIC), provided a new paradigm for model selection in the analysis of empirical data. His approach, with a funda mental link to information theory, is relatively simple and easy to use in practice, but little taught in statistics classes and far less understood in the applied sciences than should be the case. We do not accept the notion that there is a simple, "true model" in the biological sciences.
Applied Econometrics With R
DOWNLOAD
Author : Christian Kleiber
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-10
Applied Econometrics With R written by Christian Kleiber and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-10 with Business & Economics categories.
R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
Data Segmentation And Model Selection For Computer Vision
DOWNLOAD
Author : Alireza Bab-Hadiashar
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-08-13
Data Segmentation And Model Selection For Computer Vision written by Alireza Bab-Hadiashar and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-13 with Computers categories.
The primary focus of this book is on techniques for segmentation of visual data. By "visual data," we mean data derived from a single image or from a sequence of images. By "segmentation" we mean breaking the visual data into meaningful parts or segments. However, in general, we do not mean "any old data": but data fundamental to the operation of robotic devices such as the range to and motion of objects in a scene. Having said that, much of what is covered in this book is far more general: The above merely describes our driving interests. The central emphasis of this book is that segmentation involves model fitting. We believe this to be true either implicitly (as a conscious or sub conscious guiding principle of those who develop various approaches) or explicitly. What makes model-fitting in computer vision especially hard? There are a number of factors involved in answering this question. The amount of data involved is very large. The number of segments and types (models) are not known in advance (and can sometimes rapidly change over time). The sensors we have involve the introduction of noise. Usually, we require fast ("real-time" or near real-time) computation of solutions independent of any human intervention/supervision. Chapter 1 summarizes many of the attempts of computer vision researchers to solve the problem of segmenta tion in these difficult circumstances.