Forecasting Structural Time Series Models And The Kalman Filter

DOWNLOAD
Download Forecasting Structural Time Series Models And The Kalman Filter PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Forecasting Structural Time Series Models And The Kalman Filter book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Forecasting Structural Time Series Models And The Kalman Filter
DOWNLOAD
Author : Andrew C. Harvey
language : en
Publisher: Cambridge University Press
Release Date : 1990
Forecasting Structural Time Series Models And The Kalman Filter written by Andrew C. Harvey and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with Business & Economics categories.
A synthesis of concepts and materials, that ordinarily appear separately in time series and econometrics literature, presents a comprehensive review of theoretical and applied concepts in modeling economic and social time series.
Forecasting Structural Time Series Models The Kalman Filter
DOWNLOAD
Author : Andrew C. Harvey
language : en
Publisher:
Release Date : 2014-05-18
Forecasting Structural Time Series Models The Kalman Filter written by Andrew C. Harvey and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-18 with Electronic books categories.
This book provides a synthesis of concepts and materials that ordinarily appear separately in time series and econometrics literature, presenting a comprehensive review of both theoretical and applied concepts. Perhaps the most novel feature of the book is its use of Kalman filtering together with econometric and time series methodology. From a technical point of view, state space models and the Kalman filter play a key role in the statistical treatment of structural time series models. This technique was originally developed in control engineering but is becoming increasingly important in economics and operations research. The book is primarily concerned with modeling economic and social time series and with addressing the special problems that the treatment of such series pose.
Forecasting Economic Time Series
DOWNLOAD
Author : Michael Clements
language : en
Publisher: Cambridge University Press
Release Date : 1998-10-08
Forecasting Economic Time Series written by Michael Clements and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-10-08 with Business & Economics categories.
This book provides a formal analysis of the models, procedures, and measures of economic forecasting with a view to improving forecasting practice. David Hendry and Michael Clements base the analyses on assumptions pertinent to the economies to be forecast, viz. a non-constant, evolving economic system, and econometric models whose form and structure are unknown a priori. The authors find that conclusions which can be established formally for constant-parameter stationary processes and correctly-specified models often do not hold when unrealistic assumptions are relaxed. Despite the difficulty of proceeding formally when models are mis-specified in unknown ways for non-stationary processes that are subject to structural breaks, Hendry and Clements show that significant insights can be gleaned. For example, a formal taxonomy of forecasting errors can be developed, the role of causal information clarified, intercept corrections re-established as a method for achieving robustness against forms of structural change, and measures of forecast accuracy re-interpreted.
Restricted Kalman Filtering
DOWNLOAD
Author : Adrian Pizzinga
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-07-25
Restricted Kalman Filtering written by Adrian Pizzinga and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-07-25 with Mathematics categories.
In statistics, the Kalman filter is a mathematical method whose purpose is to use a series of measurements observed over time, containing random variations and other inaccuracies, and produce estimates that tend to be closer to the true unknown values than those that would be based on a single measurement alone. This Brief offers developments on Kalman filtering subject to general linear constraints. There are essentially three types of contributions: new proofs for results already established; new results within the subject; and applications in investment analysis and macroeconomics, where the proposed methods are illustrated and evaluated. The Brief has a short chapter on linear state space models and the Kalman filter, aiming to make the book self-contained and to give a quick reference to the reader (notation and terminology). The prerequisites would be a contact with time series analysis in the level of Hamilton (1994) or Brockwell & Davis (2002) and also with linear state models and the Kalman filter – each of these books has a chapter entirely dedicated to the subject. The book is intended for graduate students, researchers and practitioners in statistics (specifically: time series analysis and econometrics).
Understanding Dsge Filters In Forecasting And Policy Analysis
DOWNLOAD
Author : Michal Andrle
language : en
Publisher: International Monetary Fund
Release Date : 2013-05-08
Understanding Dsge Filters In Forecasting And Policy Analysis written by Michal Andrle and has been published by International Monetary Fund this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-08 with Business & Economics categories.
This paper introduces methods that allow analysts to (i) decompose the estimates of unobserved quantities into observed data, (ii) to better understand revision properties of the model, and (iii) to impose subjective prior constraints on path estimates of unobserved shocks in structural economic models. For instance, a decomposition of the flexible-price output gap, or a technology shock, into contributions of output, inflation, interest rates, and other observed variables' contribution is feasible. The intuitive nature and analytical clarity of the suggested procedures are appealing for policy-related and forecasting models.
Bayesian Signal Processing
DOWNLOAD
Author : James V. Candy
language : en
Publisher: John Wiley & Sons
Release Date : 2016-07-12
Bayesian Signal Processing written by James V. Candy and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-12 with Technology & Engineering categories.
Presents the Bayesian approach to statistical signal processing for a variety of useful model sets This book aims to give readers a unified Bayesian treatment starting from the basics (Baye’s rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on “Sequential Bayesian Detection,” a new section on “Ensemble Kalman Filters” as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to “fill-in-the gaps” of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical “sanity testing” lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems. The second edition of Bayesian Signal Processing features: “Classical” Kalman filtering for linear, linearized, and nonlinear systems; “modern” unscented and ensemble Kalman filters: and the “next-generation” Bayesian particle filters Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving MATLAB® notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available Problem sets included to test readers’ knowledge and help them put their new skills into practice Bayesian Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.
Dealing With Endogeneity In Regression Models With Dynamic Coefficients
DOWNLOAD
Author : Chang-Jin Kim
language : en
Publisher: Now Publishers Inc
Release Date : 2010
Dealing With Endogeneity In Regression Models With Dynamic Coefficients written by Chang-Jin Kim and has been published by Now Publishers Inc this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Business & Economics categories.
The purpose of this monograph is to present a unified econometric framework for dealing with the issues of endogeneity in Markov-switching models and time-varying parameter models, as developed by Kim (2004, 2006, 2009), Kim and Nelson (2006), Kim et al. (2008), and Kim and Kim (2009). While Cogley and Sargent (2002), Primiceri (2005), Sims and Zha (2006), and Sims et al. (2008) consider estimation of simultaneous equations models with stochastic coefficients as a system, we deal with the LIML (limited information maximum likelihood) estimation of a single equation of interest out of a simultaneous equations model. Our main focus is on the two-step estimation procedures based on the control function approach, and we show how the problem of generated regressors can be addressed in second-step regressions.
Digital Filters
DOWNLOAD
Author : Fausto Pedro García Márquez
language : en
Publisher: BoD – Books on Demand
Release Date : 2011-04-11
Digital Filters written by Fausto Pedro García Márquez and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-04-11 with Computers categories.
The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature.
Handbook Of Research Methods And Applications In Empirical Finance
DOWNLOAD
Author : Adrian R. Bell
language : en
Publisher: Edward Elgar Publishing
Release Date : 2013-01-01
Handbook Of Research Methods And Applications In Empirical Finance written by Adrian R. Bell and has been published by Edward Elgar Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-01 with Business & Economics categories.
This impressive Handbook presents the quantitative techniques that are commonly employed in empirical finance research together with real-world, state-of-the-art research examples. Written by international experts in their field, the unique approach describes a question or issue in finance and then demonstrates the methodologies that may be used to solve it. All of the techniques described are used to address real problems rather than being presented for their own sake, and the areas of application have been carefully selected so that a broad range of methodological approaches can be covered. The Handbook is aimed primarily at doctoral researchers and academics who are engaged in conducting original empirical research in finance. In addition, the book will be useful to researchers in the financial markets and also advanced Masters-level students who are writing dissertations.
Statistical Learning For Big Dependent Data
DOWNLOAD
Author : Daniel Peña
language : en
Publisher: John Wiley & Sons
Release Date : 2021-05-04
Statistical Learning For Big Dependent Data written by Daniel Peña and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-04 with Mathematics categories.
Master advanced topics in the analysis of large, dynamically dependent datasets with this insightful resource Statistical Learning with Big Dependent Data delivers a comprehensive presentation of the statistical and machine learning methods useful for analyzing and forecasting large and dynamically dependent data sets. The book presents automatic procedures for modelling and forecasting large sets of time series data. Beginning with some visualization tools, the book discusses procedures and methods for finding outliers, clusters, and other types of heterogeneity in big dependent data. It then introduces various dimension reduction methods, including regularization and factor models such as regularized Lasso in the presence of dynamical dependence and dynamic factor models. The book also covers other forecasting procedures, including index models, partial least squares, boosting, and now-casting. It further presents machine-learning methods, including neural network, deep learning, classification and regression trees and random forests. Finally, procedures for modelling and forecasting spatio-temporal dependent data are also presented. Throughout the book, the advantages and disadvantages of the methods discussed are given. The book uses real-world examples to demonstrate applications, including use of many R packages. Finally, an R package associated with the book is available to assist readers in reproducing the analyses of examples and to facilitate real applications. Analysis of Big Dependent Data includes a wide variety of topics for modeling and understanding big dependent data, like: New ways to plot large sets of time series An automatic procedure to build univariate ARMA models for individual components of a large data set Powerful outlier detection procedures for large sets of related time series New methods for finding the number of clusters of time series and discrimination methods , including vector support machines, for time series Broad coverage of dynamic factor models including new representations and estimation methods for generalized dynamic factor models Discussion on the usefulness of lasso with time series and an evaluation of several machine learning procedure for forecasting large sets of time series Forecasting large sets of time series with exogenous variables, including discussions of index models, partial least squares, and boosting. Introduction of modern procedures for modeling and forecasting spatio-temporal data Perfect for PhD students and researchers in business, economics, engineering, and science: Statistical Learning with Big Dependent Data also belongs to the bookshelves of practitioners in these fields who hope to improve their understanding of statistical and machine learning methods for analyzing and forecasting big dependent data.