Forecasting Structural Time Series Models And The Kalman Filter

DOWNLOAD
Download Forecasting Structural Time Series Models And The Kalman Filter PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Forecasting Structural Time Series Models And The Kalman Filter book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Forecasting Structural Time Series Models And The Kalman Filter
DOWNLOAD
Author : Andrew C. Harvey
language : en
Publisher: Cambridge University Press
Release Date : 1990
Forecasting Structural Time Series Models And The Kalman Filter written by Andrew C. Harvey and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with Business & Economics categories.
A synthesis of concepts and materials, that ordinarily appear separately in time series and econometrics literature, presents a comprehensive review of theoretical and applied concepts in modeling economic and social time series.
Forecasting Structural Time Series Models And The Kalman Filter
DOWNLOAD
Author : Andrew C. Harvey
language : en
Publisher: Cambridge University Press
Release Date : 1990-02-22
Forecasting Structural Time Series Models And The Kalman Filter written by Andrew C. Harvey and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990-02-22 with Business & Economics categories.
In this book, Andrew Harvey sets out to provide a unified and comprehensive theory of structural time series models. Unlike the traditional ARIMA models, structural time series models consist explicitly of unobserved components, such as trends and seasonals, which have a direct interpretation. As a result the model selection methodology associated with structural models is much closer to econometric methodology. The link with econometrics is made even closer by the natural way in which the models can be extended to include explanatory variables and to cope with multivariate time series. From the technical point of view, state space models and the Kalman filter play a key role in the statistical treatment of structural time series models. The book includes a detailed treatment of the Kalman filter. This technique was originally developed in control engineering, but is becoming increasingly important in fields such as economics and operations research. This book is concerned primarily with modelling economic and social time series, and with addressing the special problems which the treatment of such series poses. The properties of the models and the methodological techniques used to select them are illustrated with various applications. These range from the modellling of trends and cycles in US macroeconomic time series to to an evaluation of the effects of seat belt legislation in the UK.
Time Series Models
DOWNLOAD
Author : Andrew C. Harvey
language : en
Publisher: Financial Times/Prentice Hall
Release Date : 1993
Time Series Models written by Andrew C. Harvey and has been published by Financial Times/Prentice Hall this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Time-series analysis categories.
A companion volume to The Econometric Analysis of Time series, this book focuses on the estimation, testing and specification of dynamic models which are not based on any behavioural theory. It covers univariate and multivariate time series and emphasizes autoregressive moving-average processes.
Forecasting Structural Time Series Models The Kalman Filter
DOWNLOAD
Author : Andrew C. Harvey
language : en
Publisher:
Release Date : 2014-05-18
Forecasting Structural Time Series Models The Kalman Filter written by Andrew C. Harvey and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-18 with Electronic books categories.
This book provides a synthesis of concepts and materials that ordinarily appear separately in time series and econometrics literature, presenting a comprehensive review of both theoretical and applied concepts. Perhaps the most novel feature of the book is its use of Kalman filtering together with econometric and time series methodology. From a technical point of view, state space models and the Kalman filter play a key role in the statistical treatment of structural time series models. This technique was originally developed in control engineering but is becoming increasingly important in economics and operations research. The book is primarily concerned with modeling economic and social time series and with addressing the special problems that the treatment of such series pose.
Time Series Analysis By State Space Methods
DOWNLOAD
Author : James Durbin
language : en
Publisher: Oxford University Press
Release Date : 2012-05-03
Time Series Analysis By State Space Methods written by James Durbin and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-03 with Business & Economics categories.
This is a comprehensive treatment of the state space approach to time series analysis. A distinguishing feature of state space time series models is that observations are regarded as made up of distinct components, which are each modelled separately.
An Introduction To State Space Time Series Analysis
DOWNLOAD
Author : Jacques J. F. Commandeur
language : en
Publisher: OUP Oxford
Release Date : 2007-07-19
An Introduction To State Space Time Series Analysis written by Jacques J. F. Commandeur and has been published by OUP Oxford this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-19 with Business & Economics categories.
Providing a practical introduction to state space methods as applied to unobserved components time series models, also known as structural time series models, this book introduces time series analysis using state space methodology to readers who are neither familiar with time series analysis, nor with state space methods. The only background required in order to understand the material presented in the book is a basic knowledge of classical linear regression models, of which a brief review is provided to refresh the reader's knowledge. Also, a few sections assume familiarity with matrix algebra, however, these sections may be skipped without losing the flow of the exposition. The book offers a step by step approach to the analysis of the salient features in time series such as the trend, seasonal, and irregular components. Practical problems such as forecasting and missing values are treated in some detail. This useful book will appeal to practitioners and researchers who use time series on a daily basis in areas such as the social sciences, quantitative history, biology and medicine. It also serves as an accompanying textbook for a basic time series course in econometrics and statistics, typically at an advanced undergraduate level or graduate level.
Economic Time Series
DOWNLOAD
Author : William R. Bell
language : en
Publisher: CRC Press
Release Date : 2012-03-19
Economic Time Series written by William R. Bell and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-03-19 with Mathematics categories.
Economic Time Series: Modeling and Seasonality is a focused resource on analysis of economic time series as pertains to modeling and seasonality, presenting cutting-edge research that would otherwise be scattered throughout diverse peer-reviewed journals. This compilation of 21 chapters showcases the cross-fertilization between the fields of time series modeling and seasonal adjustment, as is reflected both in the contents of the chapters and in their authorship, with contributors coming from academia and government statistical agencies. For easier perusal and absorption, the contents have been grouped into seven topical sections: Section I deals with periodic modeling of time series, introducing, applying, and comparing various seasonally periodic models Section II examines the estimation of time series components when models for series are misspecified in some sense, and the broader implications this has for seasonal adjustment and business cycle estimation Section III examines the quantification of error in X-11 seasonal adjustments, with comparisons to error in model-based seasonal adjustments Section IV discusses some practical problems that arise in seasonal adjustment: developing asymmetric trend-cycle filters, dealing with both temporal and contemporaneous benchmark constraints, detecting trading-day effects in monthly and quarterly time series, and using diagnostics in conjunction with model-based seasonal adjustment Section V explores outlier detection and the modeling of time series containing extreme values, developing new procedures and extending previous work Section VI examines some alternative models and inference procedures for analysis of seasonal economic time series Section VII deals with aspects of modeling, estimation, and forecasting for nonseasonal economic time series By presenting new methodological developments as well as pertinent empirical analyses and reviews of established methods, the book provides much that is stimulating and practically useful for the serious researcher and analyst of economic time series.
Robust Kalman Filtering For Signals And Systems With Large Uncertainties
DOWNLOAD
Author : Ian R. Petersen
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Robust Kalman Filtering For Signals And Systems With Large Uncertainties written by Ian R. Petersen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Technology & Engineering categories.
A significant shortcoming of the state space control theory that emerged in the 1960s was its lack of concern for the issue of robustness. However, in the design of feedback control systems, robustness is a critical issue. These facts led to great activity in the research area of robust control theory. One of the major developments of modern control theory was the Kalman Filter and hence the development of a robust version of the Kalman Filter has become an active area of research. Although the issue of robustness in filtering is not as critical as in feedback control (where there is always the issue of instability to worry about), research on robust filtering and state estimation has remained very active in recent years. However, although numerous books have appeared on the topic of Kalman filtering, this book is one of the first to appear on robust Kalman filtering. Most of the material presented in this book derives from a period of research collaboration between the authors from 1992 to 1994. However, its origins go back earlier than that. The first author (LR. P. ) became in terested in problems of robust filtering through his research collaboration with Dr. Duncan McFarlane. At this time, Dr. McFarlane was employed at the Melbourne Research Laboratories ofBHP Ltd. , a large Australian min erals, resources, and steel processing company.
Bayesian Forecasting And Dynamic Models
DOWNLOAD
Author : Mike West
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-05-02
Bayesian Forecasting And Dynamic Models written by Mike West and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-02 with Mathematics categories.
This text is concerned with Bayesian learning, inference and forecasting in dynamic environments. We describe the structure and theory of classes of dynamic models and their uses in forecasting and time series analysis. The principles, models and methods of Bayesian forecasting and time - ries analysis have been developed extensively during the last thirty years. Thisdevelopmenthasinvolvedthoroughinvestigationofmathematicaland statistical aspects of forecasting models and related techniques. With this has come experience with applications in a variety of areas in commercial, industrial, scienti?c, and socio-economic ?elds. Much of the technical - velopment has been driven by the needs of forecasting practitioners and applied researchers. As a result, there now exists a relatively complete statistical and mathematical framework, presented and illustrated here. In writing and revising this book, our primary goals have been to present a reasonably comprehensive view of Bayesian ideas and methods in m- elling and forecasting, particularly to provide a solid reference source for advanced university students and research workers.