Regression Models For Categorical And Count Data

DOWNLOAD
Download Regression Models For Categorical And Count Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Regression Models For Categorical And Count Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Regression Models For Categorical And Count Data
DOWNLOAD
Author : Peter Martin
language : en
Publisher: SAGE
Release Date : 2022-03
Regression Models For Categorical And Count Data written by Peter Martin and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03 with Reference categories.
In this engaging and well-illustrated volume of the SAGE Quantitative Research Kit, Peter Martin provides practical guidance on conducting regression analysis on categorical and count data. The author covers both the theory and application of statistical models, with the help of illuminating graphs.
Regression Models For Categorical And Limited Dependent Variables
DOWNLOAD
Author : J. Scott Long
language : en
Publisher: SAGE
Release Date : 1997-01-09
Regression Models For Categorical And Limited Dependent Variables written by J. Scott Long and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-01-09 with Mathematics categories.
THE APPROACH "J. Scott Long′s approach is one that I highly commend. There is a decided emphasis on the application and interpretation of the specific statistical techniques. Long works from the premise that the major difficulty with the analysis of limited and categorical dependent variables (LCDVs) is the complexity of interpreting nonlinear models, and he provides tools for interpretation that can be widely applied across the different techniques." --Robert L. Kaufman, Sociology, Ohio State University "A thorough and comprehensive introduction to analyzing categorical and limited dependent variables from a traditional regression perspective that provides unusually clear discussions concerning estimation, identification, and the multiplicity of models available to the researcher to analyze such data." --Scott Hershberger, Psychology, University of Kansas THE ORGANIZATION "The thing that impresses me the most about this book is how organized it is. The chapters are in excellent logical sequence. There is a useful repetition of important concepts (e.g., estimation, hypothesis testing) from chapter to chapter. J. Scott Long has done a terrific job of organizing like things from disparate literatures, such as the scaler measures of fit in Chapter 4." --Herbert L. Smith, Sociology, University of Pennsylvania "A major strength of the book is the way that it is organized. The chapter about each technique is written in a highly organized and parallel format. First the statistical basis and assumptions for the particular model are developed, then estimation issues are considered, then issues of testing and interpretation are considered, then variations and extensions are explored." --Robert L. Kaufman, Sociology, Ohio State University FOR THE COURSE "I have been teaching a course on categorical data analysis to sociology graduate students for close to 20 years, but I have never found a book with which I was happy. J. Scott Long′s book, on the other hand, is nearly ideal for my objectives and preferences, and I expect that many other social scientists will feel the same way. I will definitely adopt it the next time I teach the course. It deals with the right topics in the most desirable sequence and it is clearly written." --Paul D. Allison, Sociology, University of Pennsylvania Class-tested at two major universities and written by an award-winning teacher, J. Scott Long′s book gives readers unified treatment of the most useful models for categorical and limited dependent variables (CLDVs). Throughout the book, the links among models are made explicit, and common methods of derivation, interpretation, and testing are applied. In addition, Long explains how models relate to linear regression models whenever possible. In order for the reader to see how these models can be applied, Long illustrates each model with data from a variety of applications, ranging from attitudes toward working mothers to scientific productivity. The book begins with a review of the linear regression model and an introduction to maximum likelihood estimation. It then covers the logit and probit models for binary outcomes--providing details on each of the ways in which these models can be interpreted, reviews standard statistical tests associated with maximum likelihood estimation, and considers a variety of measures for assessing the fit of a model. Long extends the binary logit and probit models to ordered outcomes, presents the multinomial and conditioned logit models for nominal outcomes, and considers models with censored and truncated dependent variables with a focus on the tobit model. He also describes models for sample selection bias and presents models for count outcomes by beginning with the Poisson regression model and showing how this model leads to the negative binomial model and zero inflated count models. He concludes by comparing and contrasting the models from earlier chapters and discussing the links between these models and models not discussed in the book, such as loglinear and event history models. Helpful exercises are included in the book with brief answers included in the appendix so that readers can practice the techniques as they read about them.
Multivariate Statistical Machine Learning Methods For Genomic Prediction
DOWNLOAD
Author : Osval Antonio Montesinos López
language : en
Publisher: Springer Nature
Release Date : 2022-02-14
Multivariate Statistical Machine Learning Methods For Genomic Prediction written by Osval Antonio Montesinos López and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-14 with Technology & Engineering categories.
This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
Discrete Data Analysis With R
DOWNLOAD
Author : Michael Friendly
language : en
Publisher: CRC Press
Release Date : 2015-12-16
Discrete Data Analysis With R written by Michael Friendly and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-16 with Mathematics categories.
An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth
Regression Models For Categorical Count And Related Variables
DOWNLOAD
Author : John P. Hoffmann
language : en
Publisher: Univ of California Press
Release Date : 2016-08-16
Regression Models For Categorical Count And Related Variables written by John P. Hoffmann and has been published by Univ of California Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-16 with Mathematics categories.
Social science and behavioral science students and researchers are often confronted with data that are categorical, count a phenomenon, or have been collected over time. Sociologists examining the likelihood of interracial marriage, political scientists studying voting behavior, criminologists counting the number of offenses people commit, health scientists studying the number of suicides across neighborhoods, and psychologists modeling mental health treatment success are all interested in outcomes that are not continuous. Instead, they must measure and analyze these events and phenomena in a discrete manner. This book provides an introduction and overview of several statistical models designed for these types of outcomes—all presented with the assumption that the reader has only a good working knowledge of elementary algebra and has taken introductory statistics and linear regression analysis. Numerous examples from the social sciences demonstrate the practical applications of these models. The chapters address logistic and probit models, including those designed for ordinal and nominal variables, regular and zero-inflated Poisson and negative binomial models, event history models, models for longitudinal data, multilevel models, and data reduction techniques such as principal components and factor analysis. Each chapter discusses how to utilize the models and test their assumptions with the statistical software Stata, and also includes exercise sets so readers can practice using these techniques. Appendices show how to estimate the models in SAS, SPSS, and R; provide a review of regression assumptions using simulations; and discuss missing data. A companion website includes downloadable versions of all the data sets used in the book.
An Introduction To Categorical Data Analysis
DOWNLOAD
Author : Alan Agresti
language : en
Publisher: John Wiley & Sons
Release Date : 2018-11-20
An Introduction To Categorical Data Analysis written by Alan Agresti and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-20 with Mathematics categories.
A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.
Categorical Data Analysis And Multilevel Modeling Using R
DOWNLOAD
Author : Xing Liu
language : en
Publisher: SAGE Publications
Release Date : 2022-02-25
Categorical Data Analysis And Multilevel Modeling Using R written by Xing Liu and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-25 with Social Science categories.
Categorical Data Analysis and Multilevel Modeling Using R provides a practical guide to regression techniques for analyzing binary, ordinal, nominal, and count response variables using the R software. Author Xing Liu offers a unified framework for both single-level and multilevel modeling of categorical and count response variables with both frequentist and Bayesian approaches. Each chapter demonstrates how to conduct the analysis using R, how to interpret the models, and how to present the results for publication. A companion website for this book contains datasets and R commands used in the book for students, and solutions for the end-of-chapter exercises on the instructor site.
Modeling Count Data
DOWNLOAD
Author : Joseph M. Hilbe
language : en
Publisher: Cambridge University Press
Release Date : 2014-07-21
Modeling Count Data written by Joseph M. Hilbe and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-21 with Business & Economics categories.
This book provides guidelines and fully worked examples of how to select, construct, interpret and evaluate the full range of count models.
Statistical Methods For Categorical Data Analysis
DOWNLOAD
Author : Daniel Powers
language : en
Publisher: Emerald Group Publishing
Release Date : 2008-11-13
Statistical Methods For Categorical Data Analysis written by Daniel Powers and has been published by Emerald Group Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-11-13 with Psychology categories.
This book provides a comprehensive introduction to methods and models for categorical data analysis and their applications in social science research. Companion website also available, at https://webspace.utexas.edu/dpowers/www/
Regression Analysis Of Count Data
DOWNLOAD
Author : A. Colin Cameron
language : en
Publisher: Cambridge University Press
Release Date : 1998-09-28
Regression Analysis Of Count Data written by A. Colin Cameron and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-09-28 with Business & Economics categories.
This analysis provides a comprehensive account of models and methods to interpret frequency data.