[PDF] Regression Models With Python For Beginners Theory And Applications Of Linear Models And Logistic Model With Python From Scratch - eBooks Review

Regression Models With Python For Beginners Theory And Applications Of Linear Models And Logistic Model With Python From Scratch


Regression Models With Python For Beginners Theory And Applications Of Linear Models And Logistic Model With Python From Scratch
DOWNLOAD

Download Regression Models With Python For Beginners Theory And Applications Of Linear Models And Logistic Model With Python From Scratch PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Regression Models With Python For Beginners Theory And Applications Of Linear Models And Logistic Model With Python From Scratch book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Regression Models With Python For Beginners Theory And Applications Of Linear Models And Logistic Model With Python From Scratch


Regression Models With Python For Beginners Theory And Applications Of Linear Models And Logistic Model With Python From Scratch
DOWNLOAD
Author : Ai Publishing
language : en
Publisher: AI Publishing
Release Date : 2020-02-08

Regression Models With Python For Beginners Theory And Applications Of Linear Models And Logistic Model With Python From Scratch written by Ai Publishing and has been published by AI Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-08 with Computers categories.


Linear and Logistic Regressions with Python for Beginners with Hands-On ProjectsAre you looking for a hands-on approach to learn Regression fast? Or perhaps you have just completed a Data Science or Python course and are looking for data science models?Do you need to start learning Logistic and Linear Regression from Scratch?This book is for you. This book will give you the chance to have a fundamental understanding of regression analysis, which is needed for any data scientist or machine learning engineer. The book will achieve this by not only having an in-depth theoretical and analytical explanation of all concepts but also including dozens of hands-on, real-life projects that will help you understand the concepts better. We will start by digging into Python programming as all the projects are developed using it, and it is currently the most used programming language in the world. We will also explore the most-famous libraries for data science such as Pandas, SciPy, Sklearn, and Statsmodel. Then, we will start seeing how we can preprocess, prepare, and visualize the data, as these steps are crucial for any data science project and can take up to 80 percent of the project time. While we will focus more on the techniques normally used in regression analysis, we will also explain, in-details, all the techniques used in any data science project.What this book offers... You will learn all about regression analysis in three modules, one for simple linear regression, one for multiple regression, and a final one for logistic regression. All three modules will contain many hands-on projects using real-world datasets.Clear and Easy to Understand SolutionsAll solutions in this book are extensively tested by a group of beta readers. The solutions provided are simplified as much as possible so that they can serve as examples for you to refer to when you are learning a new skills.What this book aims to do... This book is written with one goal in mind - to help beginners overcome their initial obstacles to learning data science and Artificial Intelligence. A lot of times, newbies tend to feel intimidated by Data Science and AI. The goal of this book is to isolate the different concepts so that beginners can gradually gain competency in the fundamentals of regression before working on a project at the end of the chapter. Beginners in Data Science does not have to be scary or frustrating when you take one step at a time.Ready to start practicing and building your Regression Models? Click the BUY button now to download this bookTopics Covered: What is Regression and When to Use It? Using Python for Regression Analysis Data Preparation Simple Linear Regression Correlation Analysis Multiple Linear Regression Hands-On Project ..and more... Click the BUY button and download the book now to start learning and practicing Regression with Python.** MONEY BACK GUARANTEE BY AMAZON **If you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform or contact us by sending an email at [email protected].



Machine Learning With Python Theory And Applications


Machine Learning With Python Theory And Applications
DOWNLOAD
Author : Gui-rong Liu
language : en
Publisher: World Scientific
Release Date : 2022-12-05

Machine Learning With Python Theory And Applications written by Gui-rong Liu and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-05 with Computers categories.


Machine Learning (ML) has become a very important area of research widely used in various industries.This compendium introduces the basic concepts, fundamental theories, essential computational techniques, codes, and applications related to ML models. With a strong foundation, one can comfortably learn related topics, methods, and algorithms. Most importantly, readers with strong fundamentals can even develop innovative and more effective machine models for his/her problems. The book is written to achieve this goal.The useful reference text benefits professionals, academics, researchers, graduate and undergraduate students in AI, ML and neural networks.



Learn Data Science From Scratch


Learn Data Science From Scratch
DOWNLOAD
Author : Pratheerth Padman
language : en
Publisher: BPB Publications
Release Date : 2024-02-15

Learn Data Science From Scratch written by Pratheerth Padman and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-02-15 with Computers categories.


Turn raw data into meaningful solutions KEY FEATURES ● Complete guide to master data science basics. ● Practical and hands-on examples in ML, deep learning, and NLP. ● Drive innovation and improve decision making through the power of data. DESCRIPTION Learn Data Science from Scratch equips you with the essential tools and techniques, from Python libraries to machine learning algorithms, to tackle real-world problems and make informed decisions. This book provides a thorough exploration of essential data science concepts, tools, and techniques. Starting with the fundamentals of data science, you will progress through data collection, web scraping, data exploration and visualization, and data cleaning and pre-processing. You will build the required foundation in statistics and probability before diving into machine learning algorithms, deep learning, natural language processing, recommender systems, and data storage systems. With hands-on examples and practical advice, each chapter offers valuable insights and key takeaways, empowering you to master the art of data-driven decision making. By the end of this book, you will be well-equipped with the essential skills and knowledge to navigate the exciting world of data science. You will be able to collect, analyze, and interpret data, build and evaluate machine learning models, and effectively communicate your findings, making you a valuable asset in any data-driven environment. WHAT YOU WILL LEARN ● Master key data science tools like Python, NumPy, Pandas, and more. ● Build a strong foundation in statistics and probability for data analysis. ● Learn and apply machine learning, from regression to deep learning. ● Expertise in NLP and recommender systems for advanced analytics. ● End-to-end data project from data collection to model deployment, with planning and execution. WHO THIS BOOK IS FOR This book is ideal for beginners with a basic understanding of programming, particularly in Python, and a foundational knowledge of mathematics. It is well-suited for aspiring data scientists and analysts. TABLE OF CONTENTS 1. Unraveling the Data Science Universe: An Introduction 2. Essential Python Libraries and Tools for Data Science 3. Statistics and Probability Essentials for Data Science 4. Data Mining Expedition: Web Scraping and Data Collection Techniques 5. Painting with Data: Exploration and Visualization 6. Data Alchemy: Cleaning and Preprocessing Raw Data 7. Machine Learning Magic: An Introduction to Predictive Modeling 8. Exploring Regression: Linear, Logistic, and Advanced Methods 9. Unveiling Patterns with k-Nearest Neighbors and Naïve Bayes 10. Exploring Tree-Based Models: Decision Trees to Gradient Boosting 11. Support Vector Machines: Simplifying Complexity 12. Dimensionality Reduction: From PCA to Advanced Methods 13. Unlocking Unsupervised Learning 14. The Essence of Neural Networks and Deep Learning 15. Word Play: Text Analytics and Natural Language Processing 16. Crafting Recommender Systems 17. Data Storage Mastery: Databases and Efficient Data Management 18. Data Science in Action: A Comprehensive End-to-end Project



Linear Models With Python


Linear Models With Python
DOWNLOAD
Author : Julian J. Faraway
language : en
Publisher: CRC Press
Release Date : 2021-02-01

Linear Models With Python written by Julian J. Faraway and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-01 with Business & Economics categories.


Praise for Linear Models with R: This book is a must-have tool for anyone interested in understanding and applying linear models. The logical ordering of the chapters is well thought out and portrays Faraway’s wealth of experience in teaching and using linear models. ... It lays down the material in a logical and intricate manner and makes linear modeling appealing to researchers from virtually all fields of study. -Biometrical Journal Throughout, it gives plenty of insight ... with comments that even the seasoned practitioner will appreciate. Interspersed with R code and the output that it produces one can find many little gems of what I think is sound statistical advice, well epitomized with the examples chosen...I read it with delight and think that the same will be true with anyone who is engaged in the use or teaching of linear models. -Journal of the Royal Statistical Society Like its widely praised, best-selling companion version, Linear Models with R, this book replaces R with Python to seamlessly give a coherent exposition of the practice of linear modeling. Linear Models with Python offers up-to-date insight on essential data analysis topics, from estimation, inference and prediction to missing data, factorial models and block designs. Numerous examples illustrate how to apply the different methods using Python. Features: Python is a powerful, open source programming language increasingly being used in data science, machine learning and computer science. Python and R are similar, but R was designed for statistics, while Python is multi-talented. This version replaces R with Python to make it accessible to a greater number of users outside of statistics, including those from Machine Learning. A reader coming to this book from an ML background will learn new statistical perspectives on learning from data. Topics include Model Selection, Shrinkage, Experiments with Blocks and Missing Data. Includes an Appendix on Python for beginners. Linear Models with Python explains how to use linear models in physical science, engineering, social science and business applications. It is ideal as a textbook for linear models or linear regression courses.



Modeling Techniques In Predictive Analytics With Python And R


Modeling Techniques In Predictive Analytics With Python And R
DOWNLOAD
Author : Thomas W. Miller
language : en
Publisher: FT Press
Release Date : 2014-09-29

Modeling Techniques In Predictive Analytics With Python And R written by Thomas W. Miller and has been published by FT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-29 with Business & Economics categories.


Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more



Python For Marketing Research And Analytics


Python For Marketing Research And Analytics
DOWNLOAD
Author : Jason S. Schwarz
language : en
Publisher: Springer Nature
Release Date : 2020-11-03

Python For Marketing Research And Analytics written by Jason S. Schwarz and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-03 with Computers categories.


This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research. This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics.



Machine Learning Theory And Applications


Machine Learning Theory And Applications
DOWNLOAD
Author : Xavier Vasques
language : en
Publisher: John Wiley & Sons
Release Date : 2024-01-11

Machine Learning Theory And Applications written by Xavier Vasques and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-11 with Computers categories.


Machine Learning Theory and Applications Enables readers to understand mathematical concepts behind data engineering and machine learning algorithms and apply them using open-source Python libraries Machine Learning Theory and Applications delves into the realm of machine learning and deep learning, exploring their practical applications by comprehending mathematical concepts and implementing them in real-world scenarios using Python and renowned open-source libraries. This comprehensive guide covers a wide range of topics, including data preparation, feature engineering techniques, commonly utilized machine learning algorithms like support vector machines and neural networks, as well as generative AI and foundation models. To facilitate the creation of machine learning pipelines, a dedicated open-source framework named hephAIstos has been developed exclusively for this book. Moreover, the text explores the fascinating domain of quantum machine learning and offers insights on executing machine learning applications across diverse hardware technologies such as CPUs, GPUs, and QPUs. Finally, the book explains how to deploy trained models through containerized applications using Kubernetes and OpenShift, as well as their integration through machine learning operations (MLOps). Additional topics covered in Machine Learning Theory and Applications include: Current use cases of AI, including making predictions, recognizing images and speech, performing medical diagnoses, creating intelligent supply chains, natural language processing, and much more Classical and quantum machine learning algorithms such as quantum-enhanced Support Vector Machines (QSVMs), QSVM multiclass classification, quantum neural networks, and quantum generative adversarial networks (qGANs) Different ways to manipulate data, such as handling missing data, analyzing categorical data, or processing time-related data Feature rescaling, extraction, and selection, and how to put your trained models to life and production through containerized applications Machine Learning Theory and Applications is an essential resource for data scientists, engineers, and IT specialists and architects, as well as students in computer science, mathematics, and bioinformatics. The reader is expected to understand basic Python programming and libraries such as NumPy or Pandas and basic mathematical concepts, especially linear algebra.



Data Mining With Python


Data Mining With Python
DOWNLOAD
Author : Di Wu
language : en
Publisher: CRC Press
Release Date : 2024-04-10

Data Mining With Python written by Di Wu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-10 with Computers categories.


Data is everywhere and it’s growing at an unprecedented rate. But making sense of all that data is a challenge. Data Mining is the process of discovering patterns and knowledge from large data sets, and Data Mining with Python focuses on the hands-on approach to learning Data Mining. It showcases how to use Python Packages to fulfill the Data Mining pipeline, which is to collect, integrate, manipulate, clean, process, organize, and analyze data for knowledge. The contents are organized based on the Data Mining pipeline, so readers can naturally progress step by step through the process. Topics, methods, and tools are explained in three aspects: “What it is” as a theoretical background, “why we need it” as an application orientation, and “how we do it” as a case study. This book is designed to give students, data scientists, and business analysts an understanding of Data Mining concepts in an applicable way. Through interactive tutorials that can be run, modified, and used for a more comprehensive learning experience, this book will help its readers to gain practical skills to implement Data Mining techniques in their work.



Handbook Of Hydroinformatics


Handbook Of Hydroinformatics
DOWNLOAD
Author : Saeid Eslamian
language : en
Publisher: Elsevier
Release Date : 2022-11-30

Handbook Of Hydroinformatics written by Saeid Eslamian and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-30 with Technology & Engineering categories.


Classic Soft-Computing Techniques is the first volume of the three, in the Handbook of HydroInformatics series. Through this comprehensive, 34-chapters work, the contributors explore the difference between traditional computing, also known as hard computing, and soft computing, which is based on the importance given to issues like precision, certainty and rigor. The chapters go on to define fundamentally classic soft-computing techniques such as Artificial Neural Network, Fuzzy Logic, Genetic Algorithm, Supporting Vector Machine, Ant-Colony Based Simulation, Bat Algorithm, Decision Tree Algorithm, Firefly Algorithm, Fish Habitat Analysis, Game Theory, Hybrid Cuckoo–Harmony Search Algorithm, Honey-Bee Mating Optimization, Imperialist Competitive Algorithm, Relevance Vector Machine, etc. It is a fully comprehensive handbook providing all the information needed around classic soft-computing techniques. This volume is a true interdisciplinary work, and the audience includes postgraduates and early career researchers interested in Computer Science, Mathematical Science, Applied Science, Earth and Geoscience, Geography, Civil Engineering, Engineering, Water Science, Atmospheric Science, Social Science, Environment Science, Natural Resources, and Chemical Engineering. - Key insights from global contributors in the fields of data management research, climate change and resilience, insufficient data problem, etc. - Offers applied examples and case studies in each chapter, providing the reader with real world scenarios for comparison. - Introduces classic soft-computing techniques, necessary for a range of disciplines.



Machine Learning With Python


Machine Learning With Python
DOWNLOAD
Author : Amin Zollanvari
language : en
Publisher: Springer Nature
Release Date : 2023-07-11

Machine Learning With Python written by Amin Zollanvari and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-11 with Computers categories.


This book is meant as a textbook for undergraduate and graduate students who are willing to understand essential elements of machine learning from both a theoretical and a practical perspective. The choice of the topics in the book is made based on one criterion: whether the practical utility of a certain method justifies its theoretical elaboration for students with a typical mathematical background in engineering and other quantitative fields. As a result, not only does the book contain practically useful techniques, it also presents them in a mathematical language that is accessible to both graduate and advanced undergraduate students. The textbook covers a range of topics including nearest neighbors, linear models, decision trees, ensemble learning, model evaluation and selection, dimensionality reduction, assembling various learning stages, clustering, and deep learning along with an introduction to fundamental Python packages for data science and machine learning such as NumPy, Pandas, Matplotlib, Scikit-Learn, XGBoost, and Keras with TensorFlow backend. Given the current dominant role of the Python programming language for machine learning, the book complements the theoretical presentation of each technique by its Python implementation. In this regard, two chapters are devoted to cover necessary Python programming skills. This feature makes the book self-sufficient for students with different programming backgrounds and is in sharp contrast with other books in the field that assume readers have prior Python programming experience. As such, the systematic structure of the book, along with the many examples and exercises presented, will help the readers to better grasp the content and be equipped with the practical skills required in day-to-day machine learning applications.