[PDF] Representation Discovery Using Harmonic Analysis - eBooks Review

Representation Discovery Using Harmonic Analysis


Representation Discovery Using Harmonic Analysis
DOWNLOAD

Download Representation Discovery Using Harmonic Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Representation Discovery Using Harmonic Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Representation Discovery Using Harmonic Analysis


Representation Discovery Using Harmonic Analysis
DOWNLOAD
Author : Sridhar Mahadevan
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Representation Discovery Using Harmonic Analysis written by Sridhar Mahadevan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particular Fourier and wavelet analysis. Biometric compression methods, the compact disc, the computerized axial tomography (CAT) scanner in medicine, JPEG compression, and spectral analysis of time-series data are among the many applications of classical Fourier and wavelet analysis. A central goal of this book is to show that these analytical tools can be generalized from their usual setting in (infinite-dimensional) Euclidean spaces to discrete (finite-dimensional) spaces typically studied in many subfields of AI. Generalizing harmonic analysis to discrete spaces poses many challenges: a discrete representation of the space must be adaptively acquired; basis functions are not pre-defined, but rather must be constructed. Algorithms for efficiently computing and representing bases require dealing with the curse of dimensionality. However, the benefits can outweigh the costs, since the extracted basis functions outperform parametric bases as they often reflect the irregular shape of a particular state space. Case studies from computer graphics, information retrieval, machine learning, and state space planning are used to illustrate the benefits of the proposed framework, and the challenges that remain to be addressed. Representation discovery is an actively developing field, and the author hopes this book will encourage other researchers to explore this exciting area of research. Table of Contents: Overview / Vector Spaces / Fourier Bases on Graphs / Multiscale Bases on Graphs / Scaling to Large Spaces / Case Study: State-Space Planning / Case Study: Computer Graphics / Case Study: Natural Language / Future Directions



Introduction To Intelligent Systems In Traffic And Transportation


Introduction To Intelligent Systems In Traffic And Transportation
DOWNLOAD
Author : Ana L.C. Bazzan
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Introduction To Intelligent Systems In Traffic And Transportation written by Ana L.C. Bazzan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


Urban mobility is not only one of the pillars of modern economic systems, but also a key issue in the quest for equality of opportunity, once it can improve access to other services. Currently, however, there are a number of negative issues related to traffic, especially in mega-cities, such as economical issues (cost of opportunity caused by delays), environmental (externalities related to emissions of pollutants), and social (traffic accidents). Solutions to these issues are more and more closely tied to information and communication technology. Indeed, a search in the technical literature (using the keyword ``urban traffic" to filter out articles on data network traffic) retrieved the following number of articles (as of December 3, 2013): 9,443 (ACM Digital Library), 26,054 (Scopus), and 1,730,000 (Google Scholar). Moreover, articles listed in the ACM query relate to conferences as diverse as MobiCom, CHI, PADS, and AAMAS. This means that there is a big and diverse community of computer scientists and computer engineers who tackle research that is connected to the development of intelligent traffic and transportation systems. It is also possible to see that this community is growing, and that research projects are getting more and more interdisciplinary. To foster the cooperation among the involved communities, this book aims at giving a broad introduction into the basic but relevant concepts related to transportation systems, targeting researchers and practitioners from computer science and information technology. In addition, the second part of the book gives a panorama of some of the most exciting and newest technologies, originating in computer science and computer engineering, that are now being employed in projects related to car-to-car communication, interconnected vehicles, car navigation, platooning, crowd sensing and sensor networks, among others. This material will also be of interest to engineers and researchers from the traffic and transportation community.



Applying Reinforcement Learning On Real World Data With Practical Examples In Python


Applying Reinforcement Learning On Real World Data With Practical Examples In Python
DOWNLOAD
Author : Philip Osborne
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2022-05-20

Applying Reinforcement Learning On Real World Data With Practical Examples In Python written by Philip Osborne and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-20 with Computers categories.


Reinforcement learning is a powerful tool in artificial intelligence in which virtual or physical agents learn to optimize their decision making to achieve long-term goals. In some cases, this machine learning approach can save programmers time, outperform existing controllers, reach super-human performance, and continually adapt to changing conditions. It has shown human level performance on a number of tasks (REF) and the methodology for automation in robotics and self-driving cars (REF). This book argues that these successes show reinforcement learning can be adopted successfully in many different situations, including robot control, stock trading, supply chain optimization, and plant control. However, reinforcement learning has traditionally been limited to applications in virtual environments or simulations in which the setup is already provided. Furthermore, experimentation may be completed for an almost limitless number of attempts risk-free. In many real-life tasks, applying reinforcement learning is not as simple as (1) data is not in the correct form for reinforcement learning; (2) data is scarce, and (3) automation has limitations in the real-world. Therefore, this book is written to help academics, domain specialists, and data enthusiast alike to understand the basic principles of applying reinforcement learning to real-world problems. This is achieved by focusing on the process of taking practical examples and modeling standard data into the correct form required to then apply basic agents. To further assist readers gain a deep and grounded understanding of the approaches, the book shows hand-calculated examples in full and then how this can be achieved in a more automated manner with code. For decision makers who are interested in reinforcement learning as a solution but are not proficient, the book includes simple, non-technical examples in the introduction and case studies section. These provide context of what reinforcement learning offer but also the challenges and risks associated with applying it in practice. Specifically, these sections illustrate the differences between reinforcement learning and other machine learning approaches as well as how well-known companies have found success using the approach to their problems.



Planning With Markov Decision Processes


Planning With Markov Decision Processes
DOWNLOAD
Author : Mausam Natarajan
language : en
Publisher: Springer Nature
Release Date : 2022-06-01

Planning With Markov Decision Processes written by Mausam Natarajan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Computers categories.


Markov Decision Processes (MDPs) are widely popular in Artificial Intelligence for modeling sequential decision-making scenarios with probabilistic dynamics. They are the framework of choice when designing an intelligent agent that needs to act for long periods of time in an environment where its actions could have uncertain outcomes. MDPs are actively researched in two related subareas of AI, probabilistic planning and reinforcement learning. Probabilistic planning assumes known models for the agent's goals and domain dynamics, and focuses on determining how the agent should behave to achieve its objectives. On the other hand, reinforcement learning additionally learns these models based on the feedback the agent gets from the environment. This book provides a concise introduction to the use of MDPs for solving probabilistic planning problems, with an emphasis on the algorithmic perspective. It covers the whole spectrum of the field, from the basics to state-of-the-art optimal and approximation algorithms. We first describe the theoretical foundations of MDPs and the fundamental solution techniques for them. We then discuss modern optimal algorithms based on heuristic search and the use of structured representations. A major focus of the book is on the numerous approximation schemes for MDPs that have been developed in the AI literature. These include determinization-based approaches, sampling techniques, heuristic functions, dimensionality reduction, and hierarchical representations. Finally, we briefly introduce several extensions of the standard MDP classes that model and solve even more complex planning problems. Table of Contents: Introduction / MDPs / Fundamental Algorithms / Heuristic Search Algorithms / Symbolic Algorithms / Approximation Algorithms / Advanced Notes



Answer Set Solving In Practice


Answer Set Solving In Practice
DOWNLOAD
Author : Martin Gebser
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Answer Set Solving In Practice written by Martin Gebser and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


Answer Set Programming (ASP) is a declarative problem solving approach, initially tailored to modeling problems in the area of Knowledge Representation and Reasoning (KRR). More recently, its attractive combination of a rich yet simple modeling language with high-performance solving capacities has sparked interest in many other areas even beyond KRR. This book presents a practical introduction to ASP, aiming at using ASP languages and systems for solving application problems. Starting from the essential formal foundations, it introduces ASP's solving technology, modeling language and methodology, while illustrating the overall solving process by practical examples. Table of Contents: List of Figures / List of Tables / Motivation / Introduction / Basic modeling / Grounding / Characterizations / Solving / Systems / Advanced modeling / Conclusions



Representing And Reasoning With Qualitative Preferences


Representing And Reasoning With Qualitative Preferences
DOWNLOAD
Author : Ganesh Ram Santhanam
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Representing And Reasoning With Qualitative Preferences written by Ganesh Ram Santhanam and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


This book provides a tutorial introduction to modern techniques for representing and reasoning about qualitative preferences with respect to a set of alternatives. The syntax and semantics of several languages for representing preference languages, including CP-nets, TCP-nets, CI-nets, and CP-theories, are reviewed. Some key problems in reasoning about preferences are introduced, including determining whether one alternative is preferred to another, or whether they are equivalent, with respect to a given set of preferences. These tasks can be reduced to model checking in temporal logic. Specifically, an induced preference graph that represents a given set of preferences can be efficiently encoded using a Kripke Structure for Computational Tree Logic (CTL). One can translate preference queries with respect to a set of preferences into an equivalent set of formulae in CTL, such that the CTL formula is satisfied whenever the preference query holds. This allows us to use a model checker to reason about preferences, i.e., answer preference queries, and to obtain a justification as to why a preference query is satisfied (or not) with respect to a set of preferences. This book defines the notions of the equivalence of two sets of preferences, including what it means for one set of preferences to subsume another, and shows how to answer preferential equivalence and subsumption queries using model checking. Furthermore, this book demontrates how to generate alternatives ordered by preference, along with providing ways to deal with inconsistent preference specifications. A description of CRISNER—an open source software implementation of the model checking approach to qualitative preference reasoning in CP-nets, TCP-nets, and CP-theories is included, as well as examples illustrating its use.



Reasoning With Probabilistic And Deterministic Graphical Models


Reasoning With Probabilistic And Deterministic Graphical Models
DOWNLOAD
Author : Rina Kraus
language : en
Publisher: Springer Nature
Release Date : 2022-12-06

Reasoning With Probabilistic And Deterministic Graphical Models written by Rina Kraus and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-06 with Computers categories.


Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well known that the tasks are computationally hard, but research during the past three decades has yielded a variety of principles and techniques that significantly advanced the state of the art. In this book we provide comprehensive coverage of the primary exact algorithms for reasoning with such models. The main feature exploited by the algorithms is the model's graph. We present inference-based, message-passing schemes (e.g., variable-elimination) and search-based, conditioning schemes (e.g., cycle-cutset conditioning and AND/OR search). Each class possesses distinguished characteristics and in particular has different time vs. space behavior. We emphasize the dependence of both schemes on few graph parameters such as the treewidth, cycle-cutset, and (the pseudo-tree) height. We believe the principles outlined here would serve well in moving forward to approximation and anytime-based schemes. The target audience of this book is researchers and students in the artificial intelligence and machine learning area, and beyond.



Reasoning With Probabilistic And Deterministic Graphical Models


Reasoning With Probabilistic And Deterministic Graphical Models
DOWNLOAD
Author : Rina Dechter
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2019-02-14

Reasoning With Probabilistic And Deterministic Graphical Models written by Rina Dechter and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-14 with Computers categories.


Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well known that the tasks are computationally hard, but research during the past three decades has yielded a variety of principles and techniques that significantly advanced the state of the art. This book provides comprehensive coverage of the primary exact algorithms for reasoning with such models. The main feature exploited by the algorithms is the model's graph. We present inference-based, message-passing schemes (e.g., variable-elimination) and search-based, conditioning schemes (e.g., cycle-cutset conditioning and AND/OR search). Each class possesses distinguished characteristics and in particular has different time vs. space behavior. We emphasize the dependence of both schemes on few graph parameters such as the treewidth, cycle-cutset, and (the pseudo-tree) height. The new edition includes the notion of influence diagrams, which focus on sequential decision making under uncertainty. We believe the principles outlined in the book would serve well in moving forward to approximation and anytime-based schemes. The target audience of this book is researchers and students in the artificial intelligence and machine learning area, and beyond.



An Introduction To Constraint Based Temporal Reasoning


An Introduction To Constraint Based Temporal Reasoning
DOWNLOAD
Author : Roman Barták
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

An Introduction To Constraint Based Temporal Reasoning written by Roman Barták and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


Solving challenging computational problems involving time has been a critical component in the development of artificial intelligence systems almost since the inception of the field. This book provides a concise introduction to the core computational elements of temporal reasoning for use in AI systems for planning and scheduling, as well as systems that extract temporal information from data. It presents a survey of temporal frameworks based on constraints, both qualitative and quantitative, as well as of major temporal consistency techniques. The book also introduces the reader to more recent extensions to the core model that allow AI systems to explicitly represent temporal preferences and temporal uncertainty. This book is intended for students and researchers interested in constraint-based temporal reasoning. It provides a self-contained guide to the different representations of time, as well as examples of recent applications of time in AI systems.



A Concise Introduction To Models And Methods For Automated Planning


A Concise Introduction To Models And Methods For Automated Planning
DOWNLOAD
Author : Hector Geffner
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

A Concise Introduction To Models And Methods For Automated Planning written by Hector Geffner and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


Planning is the model-based approach to autonomous behavior where the agent behavior is derived automatically from a model of the actions, sensors, and goals. The main challenges in planning are computational as all models, whether featuring uncertainty and feedback or not, are intractable in the worst case when represented in compact form. In this book, we look at a variety of models used in AI planning, and at the methods that have been developed for solving them. The goal is to provide a modern and coherent view of planning that is precise, concise, and mostly self-contained, without being shallow. For this, we make no attempt at covering the whole variety of planning approaches, ideas, and applications, and focus on the essentials. The target audience of the book are students and researchers interested in autonomous behavior and planning from an AI, engineering, or cognitive science perspective. Table of Contents: Preface / Planning and Autonomous Behavior / Classical Planning: Full Information and Deterministic Actions / Classical Planning: Variations and Extensions / Beyond Classical Planning: Transformations / Planning with Sensing: Logical Models / MDP Planning: Stochastic Actions and Full Feedback / POMDP Planning: Stochastic Actions and Partial Feedback / Discussion / Bibliography / Author's Biography