[PDF] Riemannian Computing In Computer Vision - eBooks Review

Riemannian Computing In Computer Vision


Riemannian Computing In Computer Vision
DOWNLOAD

Download Riemannian Computing In Computer Vision PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Riemannian Computing In Computer Vision book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Riemannian Computing In Computer Vision


Riemannian Computing In Computer Vision
DOWNLOAD
Author : Pavan K. Turaga
language : en
Publisher: Springer
Release Date : 2015-11-09

Riemannian Computing In Computer Vision written by Pavan K. Turaga and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-09 with Technology & Engineering categories.


This book presents a comprehensive treatise on Riemannian geometric computations and related statistical inferences in several computer vision problems. This edited volume includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the mathematical entities that necessitate a geometric analysis include rotation matrices (e.g. in modeling camera motion), stick figures (e.g. for activity recognition), subspace comparisons (e.g. in face recognition), symmetric positive-definite matrices (e.g. in diffusion tensor imaging), and function-spaces (e.g. in studying shapes of closed contours).



Riemannian Geometric Statistics In Medical Image Analysis


Riemannian Geometric Statistics In Medical Image Analysis
DOWNLOAD
Author : Xavier Pennec
language : en
Publisher: Academic Press
Release Date : 2019-09-04

Riemannian Geometric Statistics In Medical Image Analysis written by Xavier Pennec and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-04 with Computers categories.


Over the past 15 years, there has been a growing need in the medical image computing community for principled methods to process nonlinear geometric data. Riemannian geometry has emerged as one of the most powerful mathematical and computational frameworks for analyzing such data. Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods. Beyond medical image computing, the methods described in this book may also apply to other domains such as signal processing, computer vision, geometric deep learning, and other domains where statistics on geometric features appear. As such, the presented core methodology takes its place in the field of geometric statistics, the statistical analysis of data being elements of nonlinear geometric spaces. The foundational material and the advanced techniques presented in the later parts of the book can be useful in domains outside medical imaging and present important applications of geometric statistics methodology Content includes: The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs Applications of statistics on manifolds and shape spaces in medical image computing Diffeomorphic deformations and their applications As the methods described apply to domains such as signal processing (radar signal processing and brain computer interaction), computer vision (object and face recognition), and other domains where statistics of geometric features appear, this book is suitable for researchers and graduate students in medical imaging, engineering and computer science.



Medical Image Computing And Computer Assisted Intervention Miccai 2006


Medical Image Computing And Computer Assisted Intervention Miccai 2006
DOWNLOAD
Author : Rasmus Larsen
language : en
Publisher: Springer
Release Date : 2006-09-28

Medical Image Computing And Computer Assisted Intervention Miccai 2006 written by Rasmus Larsen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-09-28 with Computers categories.


The two-volume set LNCS 4190 and LNCS 4191 constitute the refereed proceedings of the 9th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2006. The program committee carefully selected 39 revised full papers and 193 revised poster papers for presentation in two volumes. This first volume includes 114 contributions related to bone shape analysis, robotics and tracking, segmentation, analysis of diffusion tensor MRI, and much more.



Algorithmic Advances In Riemannian Geometry And Applications


Algorithmic Advances In Riemannian Geometry And Applications
DOWNLOAD
Author : Hà Quang Minh
language : en
Publisher: Springer
Release Date : 2016-10-05

Algorithmic Advances In Riemannian Geometry And Applications written by Hà Quang Minh and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-05 with Computers categories.


This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting, 3D brain image analysis,image classification, action recognition, and motion tracking.



Machine Vision And Navigation


Machine Vision And Navigation
DOWNLOAD
Author : Oleg Sergiyenko
language : en
Publisher: Springer Nature
Release Date : 2019-09-30

Machine Vision And Navigation written by Oleg Sergiyenko and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-30 with Technology & Engineering categories.


This book presents a variety of perspectives on vision-based applications. These contributions are focused on optoelectronic sensors, 3D & 2D machine vision technologies, robot navigation, control schemes, motion controllers, intelligent algorithms and vision systems. The authors focus on applications of unmanned aerial vehicles, autonomous and mobile robots, industrial inspection applications and structural health monitoring. Recent advanced research in measurement and others areas where 3D & 2D machine vision and machine control play an important role, as well as surveys and reviews about vision-based applications. These topics are of interest to readers from diverse areas, including electrical, electronics and computer engineering, technologists, students and non-specialist readers. • Presents current research in image and signal sensors, methods, and 3D & 2D technologies in vision-based theories and applications; • Discusses applications such as daily use devices including robotics, detection, tracking and stereoscopic vision systems, pose estimation, avoidance of objects, control and data exchange for navigation, and aerial imagery processing; • Includes research contributions in scientific, industrial, and civil applications.



Medical Image Computing And Computer Assisted Intervention Miccai 2011


Medical Image Computing And Computer Assisted Intervention Miccai 2011
DOWNLOAD
Author : Gabor Fichtinger
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-09-02

Medical Image Computing And Computer Assisted Intervention Miccai 2011 written by Gabor Fichtinger and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-02 with Computers categories.


The three-volume set LNCS 6891, 6892 and 6893 constitutes the refereed proceedings of the 14th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2011, held in Toronto, Canada, in September 2011. Based on rigorous peer reviews, the program committee carefully selected 251 revised papers from 819 submissions for presentation in three volumes. The second volume includes 83 papers organized in topical sections on diffusion weighted imaging, fMRI, statistical analysis and shape modeling, and registration.



Computer Vision Accv 2009


Computer Vision Accv 2009
DOWNLOAD
Author : Hongbin Zha
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-04-23

Computer Vision Accv 2009 written by Hongbin Zha and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-23 with Computers categories.


The three volume set LNCS 5994, LNCS 5995, and LNCS 5996 constitutes the thoroughly refereed post-conference proceedings of the 9th Asian Conference on Computer Vision, ACCV 2009, held in Xi'an, China, in September 2009. The 35 revised full papers and 130 revised poster papers of the three volumes were carefully reviewed and seleceted from 670 submissions. The papers are organized in topical sections on multiple view and stereo, face and pose analysis, motion analysis and tracking, segmentation, feature extraction and object detection, image enhancement and visual attention, machine learning algorithms for vision, object categorization and face recognition, biometrics and surveillance, stereo, motion analysis, and tracking, segmentation, detection, color and texture, as well as machine learning, recognition, biometrics and surveillance.



Medical Image Computing And Computer Assisted Intervention Miccai 2010


Medical Image Computing And Computer Assisted Intervention Miccai 2010
DOWNLOAD
Author : Tianzi Jiang
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-09

Medical Image Computing And Computer Assisted Intervention Miccai 2010 written by Tianzi Jiang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09 with Computers categories.


The three-volume set LNCS 6361, 6362 and 6363 constitutes the refereed proceedings of the 13th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2010, held in Beijing, China, in September 2010. Based on rigorous peer reviews, the program committee carefully selected 251 revised papers from 786 submissions for presentation in three volumes. The first volume includes 84 papers organized in topical sections on computer-aided diagnosis, planning and guidance of interventions, image segmentation, image reconstruction and restoration, functional and diffusion-weighted MRI, modeling and simulation, instrument and patient localization and tracking, quantitative image analysis, image registration, computational and interventional cardiology, and diffusion tensor MR imaging and analysis.



Handbook Of Variational Methods For Nonlinear Geometric Data


Handbook Of Variational Methods For Nonlinear Geometric Data
DOWNLOAD
Author : Philipp Grohs
language : en
Publisher: Springer Nature
Release Date : 2020-04-03

Handbook Of Variational Methods For Nonlinear Geometric Data written by Philipp Grohs and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-03 with Mathematics categories.


This book covers different, current research directions in the context of variational methods for non-linear geometric data. Each chapter is authored by leading experts in the respective discipline and provides an introduction, an overview and a description of the current state of the art. Non-linear geometric data arises in various applications in science and engineering. Examples of nonlinear data spaces are diverse and include, for instance, nonlinear spaces of matrices, spaces of curves, shapes as well as manifolds of probability measures. Applications can be found in biology, medicine, product engineering, geography and computer vision for instance. Variational methods on the other hand have evolved to being amongst the most powerful tools for applied mathematics. They involve techniques from various branches of mathematics such as statistics, modeling, optimization, numerical mathematics and analysis. The vast majority of research on variational methods, however, is focused on data in linear spaces. Variational methods for non-linear data is currently an emerging research topic. As a result, and since such methods involve various branches of mathematics, there is a plethora of different, recent approaches dealing with different aspects of variational methods for nonlinear geometric data. Research results are rather scattered and appear in journals of different mathematical communities. The main purpose of the book is to account for that by providing, for the first time, a comprehensive collection of different research directions and existing approaches in this context. It is organized in a way that leading researchers from the different fields provide an introductory overview of recent research directions in their respective discipline. As such, the book is a unique reference work for both newcomers in the field of variational methods for non-linear geometric data, as well as for established experts that aim at to exploit new research directions or collaborations. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.



Machine Learning For Vision Based Motion Analysis


Machine Learning For Vision Based Motion Analysis
DOWNLOAD
Author : Liang Wang
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-11-18

Machine Learning For Vision Based Motion Analysis written by Liang Wang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-18 with Computers categories.


Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition. Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions. Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms; examines algorithms for clustering and segmentation, and manifold learning for dynamical models; describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction; discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy; explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data; investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets. Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval.