[PDF] Robust And Multivariate Statistical Methods - eBooks Review

Robust And Multivariate Statistical Methods


Robust And Multivariate Statistical Methods
DOWNLOAD

Download Robust And Multivariate Statistical Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Robust And Multivariate Statistical Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Robust And Multivariate Statistical Methods


Robust And Multivariate Statistical Methods
DOWNLOAD
Author : Mengxi Yi
language : en
Publisher: Springer Nature
Release Date : 2023-04-19

Robust And Multivariate Statistical Methods written by Mengxi Yi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-19 with Mathematics categories.


This book presents recent developments in multivariate and robust statistical methods. Featuring contributions by leading experts in the field it covers various topics, including multivariate and high-dimensional methods, time series, graphical models, robust estimation, supervised learning and normal extremes. It will appeal to statistics and data science researchers, PhD students and practitioners who are interested in modern multivariate and robust statistics. The book is dedicated to David E. Tyler on the occasion of his pending retirement and also includes a review contribution on the popular Tyler’s shape matrix.



Robust Statistics


Robust Statistics
DOWNLOAD
Author : Ricardo A. Maronna
language : en
Publisher: John Wiley & Sons
Release Date : 2019-01-04

Robust Statistics written by Ricardo A. Maronna and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-04 with Mathematics categories.


A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.



Robust Nonparametric Statistical Methods


Robust Nonparametric Statistical Methods
DOWNLOAD
Author : Thomas P. Hettmansperger
language : en
Publisher: Hodder Education
Release Date : 1998

Robust Nonparametric Statistical Methods written by Thomas P. Hettmansperger and has been published by Hodder Education this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Mathematics categories.


Based in ranks of the data, this book offers an alternative to the traditional least squares approach. Topics include one- and two-sample location models, linear models (including multiple regression and designed experiments), and multivariate models. Rank tests and estimates for all models are developed, including bounded influence and high breakdown methods. Emphasis is on efficiency and robustness and all methods are illustrated on data sets.



Robust Statistical Methods With R


Robust Statistical Methods With R
DOWNLOAD
Author : Jana Jureckova
language : en
Publisher: CRC Press
Release Date : 2005-11-29

Robust Statistical Methods With R written by Jana Jureckova and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-29 with Mathematics categories.


Robust statistical methods were developed to supplement the classical procedures when the data violate classical assumptions. They are ideally suited to applied research across a broad spectrum of study, yet most books on the subject are narrowly focused, overly theoretical, or simply outdated. Robust Statistical Methods with R provides a systemati



Introduction To Robust Estimation And Hypothesis Testing


Introduction To Robust Estimation And Hypothesis Testing
DOWNLOAD
Author : Rand R. Wilcox
language : en
Publisher: Academic Press
Release Date : 2011-12-14

Introduction To Robust Estimation And Hypothesis Testing written by Rand R. Wilcox and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-12-14 with Mathematics categories.


This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical solutions to problems, and provides a brief background on the foundations of modern methods, placing the new methods in historical context. Author Rand Wilcox includes chapter exercises and many real-world examples that illustrate how various methods perform in different situations. Introduction to Robust Estimation and Hypothesis Testing, Second Edition, focuses on the practical applications of modern, robust methods which can greatly enhance our chances of detecting true differences among groups and true associations among variables. - Covers latest developments in robust regression - Covers latest improvements in ANOVA - Includes newest rank-based methods - Describes and illustrated easy to use software



Introduction To Multivariate Statistical Analysis In Chemometrics


Introduction To Multivariate Statistical Analysis In Chemometrics
DOWNLOAD
Author : Kurt Varmuza
language : en
Publisher: CRC Press
Release Date : 2016-04-19

Introduction To Multivariate Statistical Analysis In Chemometrics written by Kurt Varmuza and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Mathematics categories.


Using formal descriptions, graphical illustrations, practical examples, and R software tools, Introduction to Multivariate Statistical Analysis in Chemometrics presents simple yet thorough explanations of the most important multivariate statistical methods for analyzing chemical data. It includes discussions of various statistical methods, such as



Robust Multivariate Analysis


Robust Multivariate Analysis
DOWNLOAD
Author : David J. Olive
language : en
Publisher: Springer
Release Date : 2017-11-28

Robust Multivariate Analysis written by David J. Olive and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-28 with Mathematics categories.


This text presents methods that are robust to the assumption of a multivariate normal distribution or methods that are robust to certain types of outliers. Instead of using exact theory based on the multivariate normal distribution, the simpler and more applicable large sample theory is given. The text develops among the first practical robust regression and robust multivariate location and dispersion estimators backed by theory. The robust techniques are illustrated for methods such as principal component analysis, canonical correlation analysis, and factor analysis. A simple way to bootstrap confidence regions is also provided. Much of the research on robust multivariate analysis in this book is being published for the first time. The text is suitable for a first course in Multivariate Statistical Analysis or a first course in Robust Statistics. This graduate text is also useful for people who are familiar with the traditional multivariate topics, but want to know more about handling data sets with outliers. Many R programs and R data sets are available on the author’s website.



Robust Statistics


Robust Statistics
DOWNLOAD
Author : Frank R. Hampel
language : en
Publisher: John Wiley & Sons
Release Date : 2011-09-20

Robust Statistics written by Frank R. Hampel and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-20 with Mathematics categories.


The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "This is a nice book containing a wealth of information, much ofit due to the authors. . . . If an instructor designing such acourse wanted a textbook, this book would be the best choiceavailable. . . . There are many stimulating exercises, and the bookalso contains an excellent index and an extensive list ofreferences." —Technometrics "[This] book should be read carefully by anyone who isinterested in dealing with statistical models in a realisticfashion." —American Scientist Introducing concepts, theory, and applications, RobustStatistics is accessible to a broad audience, avoidingallusions to high-powered mathematics while emphasizing ideas,heuristics, and background. The text covers the approach based onthe influence function (the effect of an outlier on an estimater,for example) and related notions such as the breakdown point. Italso treats the change-of-variance function, fundamental conceptsand results in the framework of estimation of a single parameter,and applications to estimation of covariance matrices andregression parameters.



Theory Of Multivariate Statistics


Theory Of Multivariate Statistics
DOWNLOAD
Author : Martin Bilodeau
language : en
Publisher: Springer Science & Business Media
Release Date : 1999-08-05

Theory Of Multivariate Statistics written by Martin Bilodeau and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-08-05 with Mathematics categories.


Intended as a textbook for students taking a first graduate course in the subject, as well as for the general reference of interested research workers, this text discusses, in a readable form, developments from recently published work on certain broad topics not otherwise easily accessible, such as robust inference and the use of the bootstrap in a multivariate setting. A minimum background expected of the reader would include at least two courses in mathematical statistics, and certainly some exposure to the calculus of several variables together with the descriptive geometry of linear algebra.



Modern Nonparametric Robust And Multivariate Methods


Modern Nonparametric Robust And Multivariate Methods
DOWNLOAD
Author : Klaus Nordhausen
language : en
Publisher: Springer
Release Date : 2015-10-05

Modern Nonparametric Robust And Multivariate Methods written by Klaus Nordhausen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-05 with Mathematics categories.


Written by leading experts in the field, this edited volume brings together the latest findings in the area of nonparametric, robust and multivariate statistical methods. The individual contributions cover a wide variety of topics ranging from univariate nonparametric methods to robust methods for complex data structures. Some examples from statistical signal processing are also given. The volume is dedicated to Hannu Oja on the occasion of his 65th birthday and is intended for researchers as well as PhD students with a good knowledge of statistics.