Scalable Quantum Computers


Scalable Quantum Computers
DOWNLOAD

Download Scalable Quantum Computers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Scalable Quantum Computers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Scalable Quantum Computers


Scalable Quantum Computers
DOWNLOAD

Author : Samuel L. Braunstein
language : en
Publisher: Wiley-VCH
Release Date : 2001-03-12

Scalable Quantum Computers written by Samuel L. Braunstein and has been published by Wiley-VCH this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-03-12 with Science categories.


Quantum computers hold the promise of solving problems that would otherwise be intractable with conventional computers. Some prototypes of the simplest elements needed to build a quantum computer have already been implemented in the laboratory. The efforts now concentrate on combining these elements into scalable systems. In addition, alternative routes to creating large scale quantum computers are continuously being developed. This volume gives a cross-section of recent achievements in both the theory and the practical realization of quantum computing devices. Samuel L. Braunstein (Reader, University of Wales, Bangor, and editor of the book "Quantum Computing - Where do we want to go tomorrow") and Hoi-Kwong Lo (Chief Scientist, MagiQ Technologies, Inc., NY) invited experts across many disciplines involved in the development of quantum computers to review their proposals in a manner accessible to the non-expert. Breaking with tradition, this book not only contains proposals, but a set of independent expert evaluations of these ideas as well. As a by-product this volume facilitates a comparison between the widely varying disciplines covered, including: ion traps, cavity quantum electrodynamics, nuclear magnetic resonance, optical lattices, quantum dots, silicon systems, superconductivity and electrons on helium.



Towards A Scalable Quantum Computing Platform In The Ultrastrong Coupling Regime


Towards A Scalable Quantum Computing Platform In The Ultrastrong Coupling Regime
DOWNLOAD

Author : Thi Ha Kyaw
language : en
Publisher: Springer
Release Date : 2019-06-04

Towards A Scalable Quantum Computing Platform In The Ultrastrong Coupling Regime written by Thi Ha Kyaw and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-04 with Computers categories.


This thesis devotes three introductory chapters to outlining basic recipes for constructing the quantum Hamiltonian of an arbitrary superconducting circuit, starting from classical circuit design. Since a superconducting circuit is one of the most promising platforms for realizing a practical quantum computer, anyone who is starting out in the field will benefit greatly from this introduction. The second focus of the introduction is the ultrastrong light-matter interaction (USC), where the latest developments are described. This is followed by three main research works comprising quantum memory in USC; scaling up the 1D circuit to a 2D lattice configuration; creation of Noisy Intermediate-Scale Quantum era quantum error correction codes and polariton-mediated qubit-qubit interaction. The research work detailed in this thesis will make a major contribution to the development of quantum random access memory, a prerequisite for various quantum machine learning algorithms and applications.​



Quantum Computing For Computer Architects Second Edition


Quantum Computing For Computer Architects Second Edition
DOWNLOAD

Author : Tzvetan Metodi
language : en
Publisher: Springer Nature
Release Date : 2022-06-01

Quantum Computing For Computer Architects Second Edition written by Tzvetan Metodi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Technology & Engineering categories.


Quantum computers can (in theory) solve certain problems far faster than a classical computer running any known classical algorithm. While existing technologies for building quantum computers are in their infancy, it is not too early to consider their scalability and reliability in the context of the design of large-scale quantum computers. To architect such systems, one must understand what it takes to design and model a balanced, fault-tolerant quantum computer architecture. The goal of this lecture is to provide architectural abstractions for the design of a quantum computer and to explore the systems-level challenges in achieving scalable, fault-tolerant quantum computation. In this lecture, we provide an engineering-oriented introduction to quantum computation with an overview of the theory behind key quantum algorithms. Next, we look at architectural case studies based upon experimental data and future projections for quantum computation implemented using trapped ions. While we focus here on architectures targeted for realization using trapped ions, the techniques for quantum computer architecture design, quantum fault-tolerance, and compilation described in this lecture are applicable to many other physical technologies that may be viable candidates for building a large-scale quantum computing system. We also discuss general issues involved with programming a quantum computer as well as a discussion of work on quantum architectures based on quantum teleportation. Finally, we consider some of the open issues remaining in the design of quantum computers. Table of Contents: Introduction / Basic Elements for Quantum Computation / Key Quantum Algorithms / Building Reliable and Scalable Quantum Architectures / Simulation of Quantum Computation / Architectural Elements / Case Study: The Quantum Logic Array Architecture / Programming the Quantum Architecture / Using the QLA for Quantum Simulation: The Transverse Ising Model / Teleportation-Based Quantum Architectures / Concluding Remarks



Quantum Computer Systems


Quantum Computer Systems
DOWNLOAD

Author : Yongshan Ding
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Quantum Computer Systems written by Yongshan Ding and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Technology & Engineering categories.


This book targets computer scientists and engineers who are familiar with concepts in classical computer systems but are curious to learn the general architecture of quantum computing systems. It gives a concise presentation of this new paradigm of computing from a computer systems' point of view without assuming any background in quantum mechanics. As such, it is divided into two parts. The first part of the book provides a gentle overview on the fundamental principles of the quantum theory and their implications for computing. The second part is devoted to state-of-the-art research in designing practical quantum programs, building a scalable software systems stack, and controlling quantum hardware components. Most chapters end with a summary and an outlook for future directions. This book celebrates the remarkable progress that scientists across disciplines have made in the past decades and reveals what roles computer scientists and engineers can play to enable practical-scale quantum computing.



Quantum Computing For Computer Architects


Quantum Computing For Computer Architects
DOWNLOAD

Author : Tzvetan S. Metodi
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2011

Quantum Computing For Computer Architects written by Tzvetan S. Metodi and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Computers categories.


Quantum computation may seem to be a topic for science fiction, but small quantum computers have existed for several years and larger machines are on the drawing table. These efforts have been fueled by a tantalizing property: while conventional computers employ a binary representation that allows computational power to scale linearly with resources at best, quantum computations employ quantum phenomena that can interact to allow computational power that is exponential in the number of quantum bits in the system. Quantum devices rely on the ability to control and manipulate binary data stored in the phase information of quantum wave functions that describe the electronic states of individual atoms or the polarization states of photons. While existing quantum technologies are in their infancy, we shall see that it is not too early to consider scalability and reliability. In fact, such considerations are a critical link in the development chain of viable device technologies capable of orchestrating reliable control of tens of millions quantum bits in a large-scale system. The goal of this lecture is to provide architectural abstractions common to potential technologies and explore the systems-level challenges in achieving scalable, fault-tolerant quantum computation.



Designing Scalable Quantum Computer Architectures


Designing Scalable Quantum Computer Architectures
DOWNLOAD

Author : Dean Elbert Copsey
language : en
Publisher:
Release Date : 2005

Designing Scalable Quantum Computer Architectures written by Dean Elbert Copsey and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with categories.




Quantum Computing


Quantum Computing
DOWNLOAD

Author : National Academies of Sciences, Engineering, and Medicine
language : en
Publisher: National Academies Press
Release Date : 2019-04-27

Quantum Computing written by National Academies of Sciences, Engineering, and Medicine and has been published by National Academies Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-27 with Computers categories.


Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.



Quantum Computing For Computer Architects


Quantum Computing For Computer Architects
DOWNLOAD

Author : Tzvetan S. Metodi
language : en
Publisher: Springer Nature
Release Date : 2007-12-31

Quantum Computing For Computer Architects written by Tzvetan S. Metodi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-12-31 with Technology & Engineering categories.


Quantum computation may seem to be a topic for science fiction, but small quantum computers have existed for several years and larger machines are on the drawing table. These efforts have been fueled by a tantalizing property: while conventional computers employ a binary representation that allows computational power to scale linearly with resources at best, quantum computations employ quantum phenomena that can interact to allow computational power that is exponential in the number of "quantum bits" in the system. Quantum devices rely on the ability to control and manipulate binary data stored in the phase information of quantum wave functions that describe the electronic states of individual atoms or the polarization states of photons. While existing quantum technologies are in their infancy, we shall see that it is not too early to consider scalability and reliability. In fact, such considerations are a critical link in the development chain of viable device technologies capable of orchestrating reliable control of tens of millions quantum bits in a large-scale system. The goal of this lecture is to provide architectural abstractions common to potential technologies and explore the systemslevel challenges in achieving scalable, fault-tolerant quantum computation. The central premise of the lecture is directed at quantum computation (QC) architectural issues. We stress the fact that the basic tenet of large-scale quantum computing is reliability through system balance: the need to protect and control the quantum information just long enough for the algorithm to complete execution. To architectQCsystems, onemust understand what it takes to design and model a balanced, fault-tolerant quantum architecture just as the concept of balance drives conventional architectural design. For example, the register file depth in classical computers is matched to the number of functional units, the memory bandwidth to the cache miss rate, or the interconnect bandwidth matched to the compute power of each element of a multiprocessor. We provide an engineering-oriented introduction to quantum computation and provide an architectural case study based upon experimental data and future projection for ion-trap technology.We apply the concept of balance to the design of a quantum computer, creating an architecture model that balances both quantum and classical resources in terms of exploitable parallelism in quantum applications. From this framework, we also discuss the many open issues remaining in designing systems to perform quantum computation.



Mathematics Of Quantum Computation And Quantum Technology


Mathematics Of Quantum Computation And Quantum Technology
DOWNLOAD

Author : Louis Kauffman
language : en
Publisher: CRC Press
Release Date : 2007-09-19

Mathematics Of Quantum Computation And Quantum Technology written by Louis Kauffman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-19 with Science categories.


Research and development in the pioneering field of quantum computing involve just about every facet of science and engineering, including the significant areas of mathematics and physics. Based on the firm understanding that mathematics and physics are equal partners in the continuing study of quantum science, Mathematics of Quantum Computation and Quantum Technology explores the rapid mathematical advancements made in this field in recent years. Novel Viewpoints on Numerous Aspects of Quantum Computing and Technology Edited by a well-respected team of experts, this volume compiles contributions from specialists across various disciplines. It contains four main parts, beginning with topics in quantum computing that include quantum algorithms and hidden subgroups, quantum search, algorithmic complexity, and quantum simulation. The next section covers quantum technology, such as mathematical tools, quantum wave functions, superconducting quantum computing interference devices (SQUIDs), and optical quantum computing. The section on quantum information deals with error correction, cryptography, entanglement, and communication. The final part explores topological quantum computation, knot theory, category algebra, and logic. The Tools You Need to Tackle the Next Generation of Quantum Technology This book facilitates both the construction of a common quantum language and the development of interdisciplinary quantum techniques, which will aid efforts in the pursuit of the ultimate goal-a "real" scalable quantum computer.



Quantum Error Correction And Fault Tolerant Quantum Computing S


Quantum Error Correction And Fault Tolerant Quantum Computing S
DOWNLOAD

Author : Gaitan Frank Staff
language : en
Publisher:
Release Date : 2007-10

Quantum Error Correction And Fault Tolerant Quantum Computing S written by Gaitan Frank Staff and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10 with categories.


It was once widely believed that quantum computation would never become a reality. However, the discovery of quantum error correction and the proof of the accuracy threshold theorem nearly ten years ago gave rise to extensive development and research aimed at creating a working, scalable quantum computer. Over a decade has passed since this monumental accomplishment yet no book-length pedagogical presentation of this important theory exists. Quantum Error Correction and Fault Tolerant Quantum Computing offers the first full-length exposition on the realization of a theory once thought impossible. It provides in-depth coverage on the most important class of codes discovered to date quantum stabilizer codes. It brings together the central themes of quantum error correction and fault-tolerant procedures to prove the accuracy threshold theorem for a particular noise error model. The author also includes a derivation of well-known bounds on the parameters of quantum error correcting code. Packed with over 40 real-world problems, 35 field exercises, and 17 worked-out examples, this book is the essential resource for any researcher interested in entering the quantum field as well as for those who want to understand how the unexpected realization of quantum computing is possible.