[PDF] Selecting Models From Data - eBooks Review

Selecting Models From Data


Selecting Models From Data
DOWNLOAD

Download Selecting Models From Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Selecting Models From Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Selecting Models From Data


Selecting Models From Data
DOWNLOAD
Author : P. Cheeseman
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Selecting Models From Data written by P. Cheeseman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


This volume is a selection of papers presented at the Fourth International Workshop on Artificial Intelligence and Statistics held in January 1993. These biennial workshops have succeeded in bringing together researchers from Artificial Intelligence and from Statistics to discuss problems of mutual interest. The exchange has broadened research in both fields and has strongly encour aged interdisciplinary work. The theme ofthe 1993 AI and Statistics workshop was: "Selecting Models from Data". The papers in this volume attest to the diversity of approaches to model selection and to the ubiquity of the problem. Both statistics and artificial intelligence have independently developed approaches to model selection and the corresponding algorithms to implement them. But as these papers make clear, there is a high degree of overlap between the different approaches. In particular, there is agreement that the fundamental problem is the avoidence of "overfitting"-Le., where a model fits the given data very closely, but is a poor predictor for new data; in other words, the model has partly fitted the "noise" in the original data.



Data Driven Science And Engineering


Data Driven Science And Engineering
DOWNLOAD
Author : Steven L. Brunton
language : en
Publisher: Cambridge University Press
Release Date : 2022-05-05

Data Driven Science And Engineering written by Steven L. Brunton and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-05 with Computers categories.


A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.



Model Selection And Multimodel Inference


Model Selection And Multimodel Inference
DOWNLOAD
Author : Kenneth P. Burnham
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-05-28

Model Selection And Multimodel Inference written by Kenneth P. Burnham and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-28 with Mathematics categories.


A unique and comprehensive text on the philosophy of model-based data analysis and strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. It contains several new approaches to estimating model selection uncertainty and incorporating selection uncertainty into estimates of precision. An array of examples is given to illustrate various technical issues. The text has been written for biologists and statisticians using models for making inferences from empirical data.



Regression Models


Regression Models
DOWNLOAD
Author : Richard Breen
language : en
Publisher: SAGE
Release Date : 1996-01-09

Regression Models written by Richard Breen and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-01-09 with Mathematics categories.


What techniques can social scientists use when an outcome variable for a sample (for example, y) is not representative of the population for which generalized results are preferred? Author Richard Breen provides an introduction to regression models for such data, including censored, sample-selected, and truncated data. Regression Models begins with a discussion of the Tobit model and examines issues such as maximum likelihood estimation and the interpretation of parameters. The author next discusses the basic sample selection model and the truncated regression model. Elaborating on the modeling of censored and sample-selected data via maximum likelihood, he shows the close links between the models introduced and other regression models for non-continuous dependent variables, such as the ordered probit. Concluding with an exploration of some of the criticisms of these approaches and difficulties associated with them, this volume gives readers a guide to the practical utility of these models.



Data Segmentation And Model Selection For Computer Vision


Data Segmentation And Model Selection For Computer Vision
DOWNLOAD
Author : Alireza Bab-Hadiashar
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-08-13

Data Segmentation And Model Selection For Computer Vision written by Alireza Bab-Hadiashar and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-13 with Computers categories.


The primary focus of this book is on techniques for segmentation of visual data. By "visual data," we mean data derived from a single image or from a sequence of images. By "segmentation" we mean breaking the visual data into meaningful parts or segments. However, in general, we do not mean "any old data": but data fundamental to the operation of robotic devices such as the range to and motion of objects in a scene. Having said that, much of what is covered in this book is far more general: The above merely describes our driving interests. The central emphasis of this book is that segmentation involves model fitting. We believe this to be true either implicitly (as a conscious or sub conscious guiding principle of those who develop various approaches) or explicitly. What makes model-fitting in computer vision especially hard? There are a number of factors involved in answering this question. The amount of data involved is very large. The number of segments and types (models) are not known in advance (and can sometimes rapidly change over time). The sensors we have involve the introduction of noise. Usually, we require fast ("real-time" or near real-time) computation of solutions independent of any human intervention/supervision. Chapter 1 summarizes many of the attempts of computer vision researchers to solve the problem of segmenta tion in these difficult circumstances.



Longitudinal Data Analysis


Longitudinal Data Analysis
DOWNLOAD
Author : Garrett Fitzmaurice
language : en
Publisher: CRC Press
Release Date : 2008-08-11

Longitudinal Data Analysis written by Garrett Fitzmaurice and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-08-11 with Mathematics categories.


Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory



Generalized Linear And Nonlinear Models For Correlated Data


Generalized Linear And Nonlinear Models For Correlated Data
DOWNLOAD
Author : Edward F. Vonesh
language : en
Publisher: SAS Institute
Release Date : 2014-07-07

Generalized Linear And Nonlinear Models For Correlated Data written by Edward F. Vonesh and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-07 with Mathematics categories.


Edward Vonesh's Generalized Linear and Nonlinear Models for Correlated Data: Theory and Applications Using SAS is devoted to the analysis of correlated response data using SAS, with special emphasis on applications that require the use of generalized linear models or generalized nonlinear models. Written in a clear, easy-to-understand manner, it provides applied statisticians with the necessary theory, tools, and understanding to conduct complex analyses of continuous and/or discrete correlated data in a longitudinal or clustered data setting. Using numerous and complex examples, the book emphasizes real-world applications where the underlying model requires a nonlinear rather than linear formulation and compares and contrasts the various estimation techniques for both marginal and mixed-effects models. The SAS procedures MIXED, GENMOD, GLIMMIX, and NLMIXED as well as user-specified macros will be used extensively in these applications. In addition, the book provides detailed software code with most examples so that readers can begin applying the various techniques immediately. This book is part of the SAS Press program.



Linear Mixed Models For Longitudinal Data


Linear Mixed Models For Longitudinal Data
DOWNLOAD
Author : Geert Verbeke
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-04-28

Linear Mixed Models For Longitudinal Data written by Geert Verbeke and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-28 with Mathematics categories.


This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Most analyses were done with the MIXED procedure of the SAS software package, but the data analyses are presented in a software-independent fashion.



Data Mining Using Sas Enterprise Miner


Data Mining Using Sas Enterprise Miner
DOWNLOAD
Author : Randall Matignon
language : en
Publisher: John Wiley & Sons
Release Date : 2007-08-13

Data Mining Using Sas Enterprise Miner written by Randall Matignon and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-13 with Mathematics categories.


The most thorough and up-to-date introduction to data mining techniques using SAS Enterprise Miner. The Sample, Explore, Modify, Model, and Assess (SEMMA) methodology of SAS Enterprise Miner is an extremely valuable analytical tool for making critical business and marketing decisions. Until now, there has been no single, authoritative book that explores every node relationship and pattern that is a part of the Enterprise Miner software with regard to SEMMA design and data mining analysis. Data Mining Using SAS Enterprise Miner introduces readers to a wide variety of data mining techniques and explains the purpose of-and reasoning behind-every node that is a part of the Enterprise Miner software. Each chapter begins with a short introduction to the assortment of statistics that is generated from the various nodes in SAS Enterprise Miner v4.3, followed by detailed explanations of configuration settings that are located within each node. Features of the book include: The exploration of node relationships and patterns using data from an assortment of computations, charts, and graphs commonly used in SAS procedures A step-by-step approach to each node discussion, along with an assortment of illustrations that acquaint the reader with the SAS Enterprise Miner working environment Descriptive detail of the powerful Score node and associated SAS code, which showcases the important of managing, editing, executing, and creating custom-designed Score code for the benefit of fair and comprehensive business decision-making Complete coverage of the wide variety of statistical techniques that can be performed using the SEMMA nodes An accompanying Web site that provides downloadable Score code, training code, and data sets for further implementation, manipulation, and interpretation as well as SAS/IML software programming code This book is a well-crafted study guide on the various methods employed to randomly sample, partition, graph, transform, filter, impute, replace, cluster, and process data as well as interactively group and iteratively process data while performing a wide variety of modeling techniques within the process flow of the SAS Enterprise Miner software. Data Mining Using SAS Enterprise Miner is suitable as a supplemental text for advanced undergraduate and graduate students of statistics and computer science and is also an invaluable, all-encompassing guide to data mining for novice statisticians and experts alike.



R For Data Science


R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12

R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.


Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results